Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}
Rationalize the denominator of \frac{\sqrt{15}}{\sqrt{5}+\sqrt{3}} by multiplying numerator and denominator by \sqrt{5}-\sqrt{3}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}\right)^{2}-\left(\sqrt{3}\right)^{2}}
Consider \left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{5-3}
Square \sqrt{5}. Square \sqrt{3}.
\frac{\sqrt{15}\left(\sqrt{5}-\sqrt{3}\right)}{2}
Subtract 3 from 5 to get 2.
\frac{\sqrt{15}\sqrt{5}-\sqrt{15}\sqrt{3}}{2}
Use the distributive property to multiply \sqrt{15} by \sqrt{5}-\sqrt{3}.
\frac{\sqrt{5}\sqrt{3}\sqrt{5}-\sqrt{15}\sqrt{3}}{2}
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
\frac{5\sqrt{3}-\sqrt{15}\sqrt{3}}{2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{5\sqrt{3}-\sqrt{3}\sqrt{5}\sqrt{3}}{2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{5\sqrt{3}-3\sqrt{5}}{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.