Evaluate
\frac{2\sqrt{6}}{3}\approx 1.632993162
Share
Copied to clipboard
2\times \frac{2\sqrt{3}}{3\sqrt{10}}\sqrt{5}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\times \frac{2\sqrt{3}\sqrt{10}}{3\left(\sqrt{10}\right)^{2}}\sqrt{5}
Rationalize the denominator of \frac{2\sqrt{3}}{3\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
2\times \frac{2\sqrt{3}\sqrt{10}}{3\times 10}\sqrt{5}
The square of \sqrt{10} is 10.
2\times \frac{2\sqrt{30}}{3\times 10}\sqrt{5}
To multiply \sqrt{3} and \sqrt{10}, multiply the numbers under the square root.
2\times \frac{2\sqrt{30}}{30}\sqrt{5}
Multiply 3 and 10 to get 30.
2\times \frac{1}{15}\sqrt{30}\sqrt{5}
Divide 2\sqrt{30} by 30 to get \frac{1}{15}\sqrt{30}.
\frac{2}{15}\sqrt{30}\sqrt{5}
Multiply 2 and \frac{1}{15} to get \frac{2}{15}.
\frac{2}{15}\sqrt{5}\sqrt{6}\sqrt{5}
Factor 30=5\times 6. Rewrite the square root of the product \sqrt{5\times 6} as the product of square roots \sqrt{5}\sqrt{6}.
\frac{2}{15}\times 5\sqrt{6}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{2\times 5}{15}\sqrt{6}
Express \frac{2}{15}\times 5 as a single fraction.
\frac{10}{15}\sqrt{6}
Multiply 2 and 5 to get 10.
\frac{2}{3}\sqrt{6}
Reduce the fraction \frac{10}{15} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}