Evaluate
\frac{3\left(\sqrt{3}+\sqrt{33}\right)}{2}\approx 11.214920181
Share
Copied to clipboard
\frac{2\sqrt{3}}{\sqrt{11}-3}+\frac{\sqrt{3}}{\sqrt{11}+3}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{\left(\sqrt{11}-3\right)\left(\sqrt{11}+3\right)}+\frac{\sqrt{3}}{\sqrt{11}+3}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{11}-3} by multiplying numerator and denominator by \sqrt{11}+3.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{\left(\sqrt{11}\right)^{2}-3^{2}}+\frac{\sqrt{3}}{\sqrt{11}+3}
Consider \left(\sqrt{11}-3\right)\left(\sqrt{11}+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{11-9}+\frac{\sqrt{3}}{\sqrt{11}+3}
Square \sqrt{11}. Square 3.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2}+\frac{\sqrt{3}}{\sqrt{11}+3}
Subtract 9 from 11 to get 2.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2}+\frac{\sqrt{3}\left(\sqrt{11}-3\right)}{\left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right)}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{11}+3} by multiplying numerator and denominator by \sqrt{11}-3.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2}+\frac{\sqrt{3}\left(\sqrt{11}-3\right)}{\left(\sqrt{11}\right)^{2}-3^{2}}
Consider \left(\sqrt{11}+3\right)\left(\sqrt{11}-3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2}+\frac{\sqrt{3}\left(\sqrt{11}-3\right)}{11-9}
Square \sqrt{11}. Square 3.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2}+\frac{\sqrt{3}\left(\sqrt{11}-3\right)}{2}
Subtract 9 from 11 to get 2.
\frac{2\sqrt{3}\left(\sqrt{11}+3\right)+\sqrt{3}\left(\sqrt{11}-3\right)}{2}
Since \frac{2\sqrt{3}\left(\sqrt{11}+3\right)}{2} and \frac{\sqrt{3}\left(\sqrt{11}-3\right)}{2} have the same denominator, add them by adding their numerators.
\frac{2\sqrt{33}+6\sqrt{3}+\sqrt{33}-3\sqrt{3}}{2}
Do the multiplications in 2\sqrt{3}\left(\sqrt{11}+3\right)+\sqrt{3}\left(\sqrt{11}-3\right).
\frac{3\sqrt{33}+3\sqrt{3}}{2}
Do the calculations in 2\sqrt{33}+6\sqrt{3}+\sqrt{33}-3\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}