Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\sqrt{-\left(-25\right)+\sqrt[3]{\left(-8\right)^{2}}}}{-\sqrt{-5\left(-8\right)}}
Calculate 5 to the power of 2 and get 25.
\frac{\sqrt{25+\sqrt[3]{\left(-8\right)^{2}}}}{-\sqrt{-5\left(-8\right)}}
The opposite of -25 is 25.
\frac{\sqrt{25+\sqrt[3]{64}}}{-\sqrt{-5\left(-8\right)}}
Calculate -8 to the power of 2 and get 64.
\frac{\sqrt{25+4}}{-\sqrt{-5\left(-8\right)}}
Calculate \sqrt[3]{64} and get 4.
\frac{\sqrt{29}}{-\sqrt{-5\left(-8\right)}}
Add 25 and 4 to get 29.
\frac{\sqrt{29}}{-\sqrt{40}}
Multiply -5 and -8 to get 40.
\frac{\sqrt{29}}{-2\sqrt{10}}
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
\frac{\sqrt{29}\sqrt{10}}{-2\left(\sqrt{10}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{29}}{-2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
\frac{\sqrt{29}\sqrt{10}}{-2\times 10}
The square of \sqrt{10} is 10.
\frac{\sqrt{290}}{-2\times 10}
To multiply \sqrt{29} and \sqrt{10}, multiply the numbers under the square root.
\frac{\sqrt{290}}{-20}
Multiply -2 and 10 to get -20.