Evaluate
\frac{4\sqrt{146}}{73}\approx 0.662084711
Share
Copied to clipboard
\frac{\sqrt{1+\frac{55}{73}}}{2}
The opposite of -\frac{55}{73} is \frac{55}{73}.
\frac{\sqrt{\frac{73}{73}+\frac{55}{73}}}{2}
Convert 1 to fraction \frac{73}{73}.
\frac{\sqrt{\frac{73+55}{73}}}{2}
Since \frac{73}{73} and \frac{55}{73} have the same denominator, add them by adding their numerators.
\frac{\sqrt{\frac{128}{73}}}{2}
Add 73 and 55 to get 128.
\frac{\frac{\sqrt{128}}{\sqrt{73}}}{2}
Rewrite the square root of the division \sqrt{\frac{128}{73}} as the division of square roots \frac{\sqrt{128}}{\sqrt{73}}.
\frac{\frac{8\sqrt{2}}{\sqrt{73}}}{2}
Factor 128=8^{2}\times 2. Rewrite the square root of the product \sqrt{8^{2}\times 2} as the product of square roots \sqrt{8^{2}}\sqrt{2}. Take the square root of 8^{2}.
\frac{\frac{8\sqrt{2}\sqrt{73}}{\left(\sqrt{73}\right)^{2}}}{2}
Rationalize the denominator of \frac{8\sqrt{2}}{\sqrt{73}} by multiplying numerator and denominator by \sqrt{73}.
\frac{\frac{8\sqrt{2}\sqrt{73}}{73}}{2}
The square of \sqrt{73} is 73.
\frac{\frac{8\sqrt{146}}{73}}{2}
To multiply \sqrt{2} and \sqrt{73}, multiply the numbers under the square root.
\frac{8\sqrt{146}}{73\times 2}
Express \frac{\frac{8\sqrt{146}}{73}}{2} as a single fraction.
\frac{4\sqrt{146}}{73}
Cancel out 2 in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}