Solve for y (complex solution)
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
x\neq -\sqrt{2}\text{ and }x\neq \sqrt{2}\text{ and }z\neq 0
Solve for y
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
z\neq 0\text{ and }|x|>\sqrt{2}
Solve for x (complex solution)
x=-\frac{\sqrt{25y^{2}z^{4}+18}}{3}
x=\frac{\sqrt{25y^{2}z^{4}+18}}{3}\text{, }arg(yz^{2})<\pi \text{ and }z\neq 0\text{ and }y\neq 0
Solve for x
x=-\frac{\sqrt{25y^{2}z^{4}+18}}{3}
x=\frac{\sqrt{25y^{2}z^{4}+18}}{3}\text{, }z\neq 0\text{ and }y>0
Share
Copied to clipboard
\frac{\sqrt{x^{2}-2}}{\frac{yz}{3}}=5z
Express \frac{y}{3}z as a single fraction.
\frac{\sqrt{x^{2}-2}\times 3}{yz}=5z
Divide \sqrt{x^{2}-2} by \frac{yz}{3} by multiplying \sqrt{x^{2}-2} by the reciprocal of \frac{yz}{3}.
\sqrt{x^{2}-2}\times 3=5zyz
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by yz.
3\sqrt{x^{2}-2}=5yzz
Reorder the terms.
3\sqrt{x^{2}-2}=5yz^{2}
Multiply z and z to get z^{2}.
5yz^{2}=3\sqrt{x^{2}-2}
Swap sides so that all variable terms are on the left hand side.
5z^{2}y=3\sqrt{x^{2}-2}
The equation is in standard form.
\frac{5z^{2}y}{5z^{2}}=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
Divide both sides by 5z^{2}.
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
Dividing by 5z^{2} undoes the multiplication by 5z^{2}.
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}\text{, }y\neq 0
Variable y cannot be equal to 0.
\frac{\sqrt{x^{2}-2}}{\frac{yz}{3}}=5z
Express \frac{y}{3}z as a single fraction.
\frac{\sqrt{x^{2}-2}\times 3}{yz}=5z
Divide \sqrt{x^{2}-2} by \frac{yz}{3} by multiplying \sqrt{x^{2}-2} by the reciprocal of \frac{yz}{3}.
\sqrt{x^{2}-2}\times 3=5zyz
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by yz.
3\sqrt{x^{2}-2}=5yzz
Reorder the terms.
3\sqrt{x^{2}-2}=5yz^{2}
Multiply z and z to get z^{2}.
5yz^{2}=3\sqrt{x^{2}-2}
Swap sides so that all variable terms are on the left hand side.
5z^{2}y=3\sqrt{x^{2}-2}
The equation is in standard form.
\frac{5z^{2}y}{5z^{2}}=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
Divide both sides by 5z^{2}.
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}
Dividing by 5z^{2} undoes the multiplication by 5z^{2}.
y=\frac{3\sqrt{x^{2}-2}}{5z^{2}}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}