Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{\sqrt{2}}{\sqrt{3}}}{-\sqrt{\frac{7}{3}}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{-\sqrt{\frac{7}{3}}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{2}\sqrt{3}}{3}}{-\sqrt{\frac{7}{3}}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{6}}{3}}{-\sqrt{\frac{7}{3}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{6}}{3}}{-\frac{\sqrt{7}}{\sqrt{3}}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
\frac{\frac{\sqrt{6}}{3}}{-\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{6}}{3}}{-\frac{\sqrt{7}\sqrt{3}}{3}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{6}}{3}}{-\frac{\sqrt{21}}{3}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
\frac{\sqrt{6}}{3\left(-\frac{\sqrt{21}}{3}\right)}
Express \frac{\frac{\sqrt{6}}{3}}{-\frac{\sqrt{21}}{3}} as a single fraction.
\frac{\sqrt{6}}{-\sqrt{21}}
Cancel out 3 and 3.
\frac{\sqrt{6}\sqrt{21}}{-\left(\sqrt{21}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{6}}{-\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
\frac{\sqrt{6}\sqrt{21}}{-21}
The square of \sqrt{21} is 21.
\frac{\sqrt{126}}{-21}
To multiply \sqrt{6} and \sqrt{21}, multiply the numbers under the square root.
\frac{3\sqrt{14}}{-21}
Factor 126=3^{2}\times 14. Rewrite the square root of the product \sqrt{3^{2}\times 14} as the product of square roots \sqrt{3^{2}}\sqrt{14}. Take the square root of 3^{2}.
-\frac{1}{7}\sqrt{14}
Divide 3\sqrt{14} by -21 to get -\frac{1}{7}\sqrt{14}.