Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2}{3}-\sqrt{\frac{2}{3}}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
Calculate \sqrt[3]{\frac{8}{27}} and get \frac{2}{3}.
\frac{\frac{2}{3}-\frac{\sqrt{2}}{\sqrt{3}}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
Rewrite the square root of the division \sqrt{\frac{2}{3}} as the division of square roots \frac{\sqrt{2}}{\sqrt{3}}.
\frac{\frac{2}{3}-\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2}{3}-\frac{\sqrt{2}\sqrt{3}}{3}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
The square of \sqrt{3} is 3.
\frac{\frac{2}{3}-\frac{\sqrt{6}}{3}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{2+\sqrt{6}}{3}}{\frac{3\sqrt{2}-2\sqrt{3}}{\sqrt{27}}}
Since \frac{2}{3} and \frac{\sqrt{6}}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{2+\sqrt{6}}{3}}{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{3}}}
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{\frac{2+\sqrt{6}}{3}}{\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}{3\left(\sqrt{3}\right)^{2}}}
Rationalize the denominator of \frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2+\sqrt{6}}{3}}{\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}{3\times 3}}
The square of \sqrt{3} is 3.
\frac{\frac{2+\sqrt{6}}{3}}{\frac{\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}{9}}
Multiply 3 and 3 to get 9.
\frac{\left(2+\sqrt{6}\right)\times 9}{3\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}
Divide \frac{2+\sqrt{6}}{3} by \frac{\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}{9} by multiplying \frac{2+\sqrt{6}}{3} by the reciprocal of \frac{\left(3\sqrt{2}-2\sqrt{3}\right)\sqrt{3}}{9}.
\frac{3\left(\sqrt{6}+2\right)}{\sqrt{3}\left(-2\sqrt{3}+3\sqrt{2}\right)}
Cancel out 3 in both numerator and denominator.
\frac{3\left(\sqrt{6}+2\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}\left(-2\sqrt{3}+3\sqrt{2}\right)}
Rationalize the denominator of \frac{3\left(\sqrt{6}+2\right)}{\sqrt{3}\left(-2\sqrt{3}+3\sqrt{2}\right)} by multiplying numerator and denominator by \sqrt{3}.
\frac{3\left(\sqrt{6}+2\right)\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
The square of \sqrt{3} is 3.
\frac{\left(3\sqrt{6}+6\right)\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
Use the distributive property to multiply 3 by \sqrt{6}+2.
\frac{3\sqrt{6}\sqrt{3}+6\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
Use the distributive property to multiply 3\sqrt{6}+6 by \sqrt{3}.
\frac{3\sqrt{3}\sqrt{2}\sqrt{3}+6\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{3\times 3\sqrt{2}+6\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{9\sqrt{2}+6\sqrt{3}}{3\left(-2\sqrt{3}+3\sqrt{2}\right)}
Multiply 3 and 3 to get 9.
\frac{9\sqrt{2}+6\sqrt{3}}{-6\sqrt{3}+9\sqrt{2}}
Use the distributive property to multiply 3 by -2\sqrt{3}+3\sqrt{2}.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{\left(-6\sqrt{3}+9\sqrt{2}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}
Rationalize the denominator of \frac{9\sqrt{2}+6\sqrt{3}}{-6\sqrt{3}+9\sqrt{2}} by multiplying numerator and denominator by -6\sqrt{3}-9\sqrt{2}.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{\left(-6\sqrt{3}\right)^{2}-\left(9\sqrt{2}\right)^{2}}
Consider \left(-6\sqrt{3}+9\sqrt{2}\right)\left(-6\sqrt{3}-9\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{\left(-6\right)^{2}\left(\sqrt{3}\right)^{2}-\left(9\sqrt{2}\right)^{2}}
Expand \left(-6\sqrt{3}\right)^{2}.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{36\left(\sqrt{3}\right)^{2}-\left(9\sqrt{2}\right)^{2}}
Calculate -6 to the power of 2 and get 36.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{36\times 3-\left(9\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{108-\left(9\sqrt{2}\right)^{2}}
Multiply 36 and 3 to get 108.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{108-9^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(9\sqrt{2}\right)^{2}.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{108-81\left(\sqrt{2}\right)^{2}}
Calculate 9 to the power of 2 and get 81.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{108-81\times 2}
The square of \sqrt{2} is 2.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{108-162}
Multiply 81 and 2 to get 162.
\frac{\left(9\sqrt{2}+6\sqrt{3}\right)\left(-6\sqrt{3}-9\sqrt{2}\right)}{-54}
Subtract 162 from 108 to get -54.
\frac{-108\sqrt{3}\sqrt{2}-81\left(\sqrt{2}\right)^{2}-36\left(\sqrt{3}\right)^{2}}{-54}
Use the distributive property to multiply 9\sqrt{2}+6\sqrt{3} by -6\sqrt{3}-9\sqrt{2} and combine like terms.
\frac{-108\sqrt{6}-81\left(\sqrt{2}\right)^{2}-36\left(\sqrt{3}\right)^{2}}{-54}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{-108\sqrt{6}-81\times 2-36\left(\sqrt{3}\right)^{2}}{-54}
The square of \sqrt{2} is 2.
\frac{-108\sqrt{6}-162-36\left(\sqrt{3}\right)^{2}}{-54}
Multiply -81 and 2 to get -162.
\frac{-108\sqrt{6}-162-36\times 3}{-54}
The square of \sqrt{3} is 3.
\frac{-108\sqrt{6}-162-108}{-54}
Multiply -36 and 3 to get -108.
\frac{-108\sqrt{6}-270}{-54}
Subtract 108 from -162 to get -270.
2\sqrt{6}+5
Divide each term of -108\sqrt{6}-270 by -54 to get 2\sqrt{6}+5.