Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{\left(a-4\right)\left(3-\frac{6\sqrt{a}}{a}\right)}{\left(3-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
Express \frac{6}{a}\sqrt{a} as a single fraction.
\frac{\left(a-4\right)\left(3-\frac{6}{\sqrt{a}}\right)}{\left(3-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
Cancel out \sqrt{a} in both numerator and denominator.
\frac{\left(a-4\right)\left(\frac{3\sqrt{a}}{\sqrt{a}}-\frac{6}{\sqrt{a}}\right)}{\left(3-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{\sqrt{a}}{\sqrt{a}}.
\frac{\left(a-4\right)\times \frac{3\sqrt{a}-6}{\sqrt{a}}}{\left(3-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
Since \frac{3\sqrt{a}}{\sqrt{a}} and \frac{6}{\sqrt{a}} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}}}{\left(3-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
Express \left(a-4\right)\times \frac{3\sqrt{a}-6}{\sqrt{a}} as a single fraction.
\frac{\frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}}}{\left(\frac{3a}{a}-\frac{12}{a}\right)\left(a-2\sqrt{a}\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{a}{a}.
\frac{\frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}}}{\frac{3a-12}{a}\left(a-2\sqrt{a}\right)}
Since \frac{3a}{a} and \frac{12}{a} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}}}{\frac{\left(3a-12\right)\left(a-2\sqrt{a}\right)}{a}}
Express \frac{3a-12}{a}\left(a-2\sqrt{a}\right) as a single fraction.
\frac{\left(a-4\right)\left(3\sqrt{a}-6\right)a}{\sqrt{a}\left(3a-12\right)\left(a-2\sqrt{a}\right)}
Divide \frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}} by \frac{\left(3a-12\right)\left(a-2\sqrt{a}\right)}{a} by multiplying \frac{\left(a-4\right)\left(3\sqrt{a}-6\right)}{\sqrt{a}} by the reciprocal of \frac{\left(3a-12\right)\left(a-2\sqrt{a}\right)}{a}.
\frac{3\left(\sqrt{a}-2\right)a\left(a-4\right)}{3\left(\sqrt{a}-2\right)\left(\sqrt{a}\right)^{2}\left(a-4\right)}
Factor the expressions that are not already factored.
\frac{a}{\left(\sqrt{a}\right)^{2}}
Cancel out 3\left(\sqrt{a}-2\right)\left(a-4\right) in both numerator and denominator.
\frac{a}{a}
Expand the expression.
1
Cancel out a in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}