Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}-11\times 4\sqrt{3}\right)}{\sqrt{3}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(2\sqrt{3}-44\sqrt{3}\right)}{\sqrt{3}}
Multiply -11 and 4 to get -44.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)\sqrt{3}}{\sqrt{3}}
Combine 2\sqrt{3} and -44\sqrt{3} to get -42\sqrt{3}.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)\sqrt{3}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)\sqrt{3}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)\times 3}{3}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\left(7\sqrt{3}-2\sqrt{2}\right)\left(-126\right)}{3}
Multiply -42 and 3 to get -126.
\left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right)
Divide \left(7\sqrt{3}-2\sqrt{2}\right)\left(-126\right) by 3 to get \left(7\sqrt{3}-2\sqrt{2}\right)\left(-42\right).
-294\sqrt{3}+84\sqrt{2}
Use the distributive property to multiply 7\sqrt{3}-2\sqrt{2} by -42.