Evaluate
24.375+11.090625i
Real Part
24.375
Share
Copied to clipboard
\frac{130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65i^{2}}{130+59.15i+30+13.65i}
Multiply complex numbers 130+59.15i and 30+13.65i like you multiply binomials.
\frac{130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65\left(-1\right)}{130+59.15i+30+13.65i}
By definition, i^{2} is -1.
\frac{3900+1774.5i+1774.5i-807.3975}{130+59.15i+30+13.65i}
Do the multiplications in 130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65\left(-1\right).
\frac{3900-807.3975+\left(1774.5+1774.5\right)i}{130+59.15i+30+13.65i}
Combine the real and imaginary parts in 3900+1774.5i+1774.5i-807.3975.
\frac{3092.6025+3549i}{130+59.15i+30+13.65i}
Do the additions in 3900-807.3975+\left(1774.5+1774.5\right)i.
\frac{3092.6025+3549i}{130+30+\left(59.15+13.65\right)i}
Combine the real and imaginary parts in 130+59.15i+30+13.65i.
\frac{3092.6025+3549i}{160+72.8i}
Do the additions in 130+30+\left(59.15+13.65\right)i.
\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{\left(160+72.8i\right)\left(160-72.8i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 160-72.8i.
\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{160^{2}-72.8^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{30899.84}
By definition, i^{2} is -1. Calculate the denominator.
\frac{3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)i^{2}}{30899.84}
Multiply complex numbers 3092.6025+3549i and 160-72.8i like you multiply binomials.
\frac{3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)\left(-1\right)}{30899.84}
By definition, i^{2} is -1.
\frac{494816.4-225141.462i+567840i+258367.2}{30899.84}
Do the multiplications in 3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)\left(-1\right).
\frac{494816.4+258367.2+\left(-225141.462+567840\right)i}{30899.84}
Combine the real and imaginary parts in 494816.4-225141.462i+567840i+258367.2.
\frac{753183.6+342698.538i}{30899.84}
Do the additions in 494816.4+258367.2+\left(-225141.462+567840\right)i.
24.375+11.090625i
Divide 753183.6+342698.538i by 30899.84 to get 24.375+11.090625i.
Re(\frac{130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65i^{2}}{130+59.15i+30+13.65i})
Multiply complex numbers 130+59.15i and 30+13.65i like you multiply binomials.
Re(\frac{130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65\left(-1\right)}{130+59.15i+30+13.65i})
By definition, i^{2} is -1.
Re(\frac{3900+1774.5i+1774.5i-807.3975}{130+59.15i+30+13.65i})
Do the multiplications in 130\times 30+130\times \left(13.65i\right)+59.15i\times 30+59.15\times 13.65\left(-1\right).
Re(\frac{3900-807.3975+\left(1774.5+1774.5\right)i}{130+59.15i+30+13.65i})
Combine the real and imaginary parts in 3900+1774.5i+1774.5i-807.3975.
Re(\frac{3092.6025+3549i}{130+59.15i+30+13.65i})
Do the additions in 3900-807.3975+\left(1774.5+1774.5\right)i.
Re(\frac{3092.6025+3549i}{130+30+\left(59.15+13.65\right)i})
Combine the real and imaginary parts in 130+59.15i+30+13.65i.
Re(\frac{3092.6025+3549i}{160+72.8i})
Do the additions in 130+30+\left(59.15+13.65\right)i.
Re(\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{\left(160+72.8i\right)\left(160-72.8i\right)})
Multiply both numerator and denominator of \frac{3092.6025+3549i}{160+72.8i} by the complex conjugate of the denominator, 160-72.8i.
Re(\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{160^{2}-72.8^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(3092.6025+3549i\right)\left(160-72.8i\right)}{30899.84})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)i^{2}}{30899.84})
Multiply complex numbers 3092.6025+3549i and 160-72.8i like you multiply binomials.
Re(\frac{3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)\left(-1\right)}{30899.84})
By definition, i^{2} is -1.
Re(\frac{494816.4-225141.462i+567840i+258367.2}{30899.84})
Do the multiplications in 3092.6025\times 160+3092.6025\times \left(-72.8i\right)+3549i\times 160+3549\left(-72.8\right)\left(-1\right).
Re(\frac{494816.4+258367.2+\left(-225141.462+567840\right)i}{30899.84})
Combine the real and imaginary parts in 494816.4-225141.462i+567840i+258367.2.
Re(\frac{753183.6+342698.538i}{30899.84})
Do the additions in 494816.4+258367.2+\left(-225141.462+567840\right)i.
Re(24.375+11.090625i)
Divide 753183.6+342698.538i by 30899.84 to get 24.375+11.090625i.
24.375
The real part of 24.375+11.090625i is 24.375.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}