Evaluate
-\frac{4\left(24k^{2}+5\right)}{5\left(4k^{2}+1\right)}
Expand
-\frac{4\left(24k^{2}+5\right)}{5\left(4k^{2}+1\right)}
Share
Copied to clipboard
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)}+\frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25\left(4k^{2}+1\right) and 25 is 25\left(4k^{2}+1\right). Multiply \frac{4k^{2}}{25} times \frac{4k^{2}+1}{4k^{2}+1}.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
Since \frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)} and \frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}}{25\left(4k^{2}+1\right)}
Do the multiplications in \left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right).
\frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}
Combine like terms in 16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}.
\frac{20\left(-24k^{2}-5\right)}{25\left(4k^{2}+1\right)}
Factor the expressions that are not already factored in \frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}.
\frac{4\left(-24k^{2}-5\right)}{5\left(4k^{2}+1\right)}
Cancel out 5 in both numerator and denominator.
\frac{4\left(-24k^{2}-5\right)}{20k^{2}+5}
Expand 5\left(4k^{2}+1\right).
\frac{-96k^{2}-20}{20k^{2}+5}
Use the distributive property to multiply 4 by -24k^{2}-5.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)}+\frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25\left(4k^{2}+1\right) and 25 is 25\left(4k^{2}+1\right). Multiply \frac{4k^{2}}{25} times \frac{4k^{2}+1}{4k^{2}+1}.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
Since \frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)} and \frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}}{25\left(4k^{2}+1\right)}
Do the multiplications in \left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right).
\frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}
Combine like terms in 16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}.
\frac{20\left(-24k^{2}-5\right)}{25\left(4k^{2}+1\right)}
Factor the expressions that are not already factored in \frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}.
\frac{4\left(-24k^{2}-5\right)}{5\left(4k^{2}+1\right)}
Cancel out 5 in both numerator and denominator.
\frac{4\left(-24k^{2}-5\right)}{20k^{2}+5}
Expand 5\left(4k^{2}+1\right).
\frac{-96k^{2}-20}{20k^{2}+5}
Use the distributive property to multiply 4 by -24k^{2}-5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}