Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)}+\frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25\left(4k^{2}+1\right) and 25 is 25\left(4k^{2}+1\right). Multiply \frac{4k^{2}}{25} times \frac{4k^{2}+1}{4k^{2}+1}.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
Since \frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)} and \frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}}{25\left(4k^{2}+1\right)}
Do the multiplications in \left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right).
\frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}
Combine like terms in 16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}.
\frac{20\left(-24k^{2}-5\right)}{25\left(4k^{2}+1\right)}
Factor the expressions that are not already factored in \frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}.
\frac{4\left(-24k^{2}-5\right)}{5\left(4k^{2}+1\right)}
Cancel out 5 in both numerator and denominator.
\frac{4\left(-24k^{2}-5\right)}{20k^{2}+5}
Expand 5\left(4k^{2}+1\right).
\frac{-96k^{2}-20}{20k^{2}+5}
Use the distributive property to multiply 4 by -24k^{2}-5.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)}+\frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 25\left(4k^{2}+1\right) and 25 is 25\left(4k^{2}+1\right). Multiply \frac{4k^{2}}{25} times \frac{4k^{2}+1}{4k^{2}+1}.
\frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)}
Since \frac{\left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}}{25\left(4k^{2}+1\right)} and \frac{4k^{2}\left(4k^{2}+1\right)}{25\left(4k^{2}+1\right)} have the same denominator, add them by adding their numerators.
\frac{16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}}{25\left(4k^{2}+1\right)}
Do the multiplications in \left(k^{2}+1\right)\left(16k^{2}-100\right)-\left(2k^{2}+25\right)\times 16k^{2}+4k^{2}\left(4k^{2}+1\right).
\frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}
Combine like terms in 16k^{4}-100k^{2}+16k^{2}-100-\left(32k^{4}+400k^{2}\right)+16k^{4}+4k^{2}.
\frac{20\left(-24k^{2}-5\right)}{25\left(4k^{2}+1\right)}
Factor the expressions that are not already factored in \frac{-480k^{2}-100}{25\left(4k^{2}+1\right)}.
\frac{4\left(-24k^{2}-5\right)}{5\left(4k^{2}+1\right)}
Cancel out 5 in both numerator and denominator.
\frac{4\left(-24k^{2}-5\right)}{20k^{2}+5}
Expand 5\left(4k^{2}+1\right).
\frac{-96k^{2}-20}{20k^{2}+5}
Use the distributive property to multiply 4 by -24k^{2}-5.