Evaluate
\frac{4x}{7}+\frac{25}{14}
Expand
\frac{4x}{7}+\frac{25}{14}
Graph
Share
Copied to clipboard
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x+4 is \left(x+3\right)\left(x+4\right). Multiply \frac{x+4}{x+3} times \frac{x+4}{x+4}. Multiply \frac{x-3}{x+4} times \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Since \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Do the multiplications in \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Combine like terms in x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Divide \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by \frac{14}{x^{2}+7x+12} by multiplying \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by the reciprocal of \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{8x+25}{14}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x+4 is \left(x+3\right)\left(x+4\right). Multiply \frac{x+4}{x+3} times \frac{x+4}{x+4}. Multiply \frac{x-3}{x+4} times \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Since \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Do the multiplications in \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Combine like terms in x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Divide \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by \frac{14}{x^{2}+7x+12} by multiplying \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by the reciprocal of \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{8x+25}{14}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}