Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x+4 is \left(x+3\right)\left(x+4\right). Multiply \frac{x+4}{x+3} times \frac{x+4}{x+4}. Multiply \frac{x-3}{x+4} times \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Since \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Do the multiplications in \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Combine like terms in x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Divide \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by \frac{14}{x^{2}+7x+12} by multiplying \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by the reciprocal of \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{8x+25}{14}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.
\frac{\frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)}-\frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+3 and x+4 is \left(x+3\right)\left(x+4\right). Multiply \frac{x+4}{x+3} times \frac{x+4}{x+4}. Multiply \frac{x-3}{x+4} times \frac{x+3}{x+3}.
\frac{\frac{\left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Since \frac{\left(x+4\right)\left(x+4\right)}{\left(x+3\right)\left(x+4\right)} and \frac{\left(x-3\right)\left(x+3\right)}{\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+4x+4x+16-x^{2}-3x+3x+9}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Do the multiplications in \left(x+4\right)\left(x+4\right)-\left(x-3\right)\left(x+3\right).
\frac{\frac{8x+25}{\left(x+3\right)\left(x+4\right)}}{\frac{14}{x^{2}+7x+12}}
Combine like terms in x^{2}+4x+4x+16-x^{2}-3x+3x+9.
\frac{\left(8x+25\right)\left(x^{2}+7x+12\right)}{\left(x+3\right)\left(x+4\right)\times 14}
Divide \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by \frac{14}{x^{2}+7x+12} by multiplying \frac{8x+25}{\left(x+3\right)\left(x+4\right)} by the reciprocal of \frac{14}{x^{2}+7x+12}.
\frac{\left(x+3\right)\left(x+4\right)\left(8x+25\right)}{14\left(x+3\right)\left(x+4\right)}
Factor the expressions that are not already factored.
\frac{8x+25}{14}
Cancel out \left(x+3\right)\left(x+4\right) in both numerator and denominator.