Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x\sqrt{x}+8\right)\left(x\sqrt{x}-8\right)}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
Divide \frac{x\sqrt{x}+8}{x-2\sqrt{x}+4} by \frac{x+2\sqrt{x}+4}{x\sqrt{x}-8} by multiplying \frac{x\sqrt{x}+8}{x-2\sqrt{x}+4} by the reciprocal of \frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}.
\frac{\left(x\sqrt{x}\right)^{2}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
Consider \left(x\sqrt{x}+8\right)\left(x\sqrt{x}-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{x^{2}\left(\sqrt{x}\right)^{2}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
Expand \left(x\sqrt{x}\right)^{2}.
\frac{x^{2}x-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
Calculate \sqrt{x} to the power of 2 and get x.
\frac{x^{3}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{x^{3}-64}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)}
Calculate 8 to the power of 2 and get 64.
\frac{x^{3}-64}{\left(x-2\sqrt{x}\right)x+2\left(x-2\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Apply the distributive property by multiplying each term of x-2\sqrt{x}+4 by each term of x+2\sqrt{x}+4.
\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2\left(x-2\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Use the distributive property to multiply x-2\sqrt{x} by x.
\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+\left(2x-4\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Use the distributive property to multiply 2 by x-2\sqrt{x}.
\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2x\sqrt{x}-4\left(\sqrt{x}\right)^{2}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Use the distributive property to multiply 2x-4\sqrt{x} by \sqrt{x}.
\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2x\sqrt{x}-4x+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Calculate \sqrt{x} to the power of 2 and get x.
\frac{x^{3}-64}{x^{2}-4x+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16}
Combine -2\sqrt{x}x and 2x\sqrt{x} to get 0.
\frac{x^{3}-64}{x^{2}-4x+4x-8\sqrt{x}+4x+8\sqrt{x}+16}
Use the distributive property to multiply 4 by x-2\sqrt{x}.
\frac{x^{3}-64}{x^{2}-8\sqrt{x}+4x+8\sqrt{x}+16}
Combine -4x and 4x to get 0.
\frac{x^{3}-64}{x^{2}+4x+16}
Combine -8\sqrt{x} and 8\sqrt{x} to get 0.
\frac{\left(x-4\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+16}
Factor the expressions that are not already factored.
x-4
Cancel out x^{2}+4x+16 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x\sqrt{x}+8\right)\left(x\sqrt{x}-8\right)}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
Divide \frac{x\sqrt{x}+8}{x-2\sqrt{x}+4} by \frac{x+2\sqrt{x}+4}{x\sqrt{x}-8} by multiplying \frac{x\sqrt{x}+8}{x-2\sqrt{x}+4} by the reciprocal of \frac{x+2\sqrt{x}+4}{x\sqrt{x}-8}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x\sqrt{x}\right)^{2}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
Consider \left(x\sqrt{x}+8\right)\left(x\sqrt{x}-8\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}\left(\sqrt{x}\right)^{2}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
Expand \left(x\sqrt{x}\right)^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{2}x-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
Calculate \sqrt{x} to the power of 2 and get x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-8^{2}}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{\left(x-2\sqrt{x}+4\right)\left(x+2\sqrt{x}+4\right)})
Calculate 8 to the power of 2 and get 64.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{\left(x-2\sqrt{x}\right)x+2\left(x-2\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Apply the distributive property by multiplying each term of x-2\sqrt{x}+4 by each term of x+2\sqrt{x}+4.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2\left(x-2\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Use the distributive property to multiply x-2\sqrt{x} by x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+\left(2x-4\sqrt{x}\right)\sqrt{x}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Use the distributive property to multiply 2 by x-2\sqrt{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2x\sqrt{x}-4\left(\sqrt{x}\right)^{2}+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Use the distributive property to multiply 2x-4\sqrt{x} by \sqrt{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-2\sqrt{x}x+2x\sqrt{x}-4x+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Calculate \sqrt{x} to the power of 2 and get x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-4x+4\left(x-2\sqrt{x}\right)+4x+8\sqrt{x}+16})
Combine -2\sqrt{x}x and 2x\sqrt{x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-4x+4x-8\sqrt{x}+4x+8\sqrt{x}+16})
Use the distributive property to multiply 4 by x-2\sqrt{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}-8\sqrt{x}+4x+8\sqrt{x}+16})
Combine -4x and 4x to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x^{3}-64}{x^{2}+4x+16})
Combine -8\sqrt{x} and 8\sqrt{x} to get 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(x-4\right)\left(x^{2}+4x+16\right)}{x^{2}+4x+16})
Factor the expressions that are not already factored in \frac{x^{3}-64}{x^{2}+4x+16}.
\frac{\mathrm{d}}{\mathrm{d}x}(x-4)
Cancel out x^{2}+4x+16 in both numerator and denominator.
x^{1-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
x^{0}
Subtract 1 from 1.
1
For any term t except 0, t^{0}=1.