Evaluate
-\frac{119}{12}\approx -9.916666667
Factor
-\frac{119}{12} = -9\frac{11}{12} = -9.916666666666666
Share
Copied to clipboard
\frac{\frac{5}{6}+\frac{12}{6}}{1-\frac{9}{7}}
Convert 2 to fraction \frac{12}{6}.
\frac{\frac{5+12}{6}}{1-\frac{9}{7}}
Since \frac{5}{6} and \frac{12}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{17}{6}}{1-\frac{9}{7}}
Add 5 and 12 to get 17.
\frac{\frac{17}{6}}{\frac{7}{7}-\frac{9}{7}}
Convert 1 to fraction \frac{7}{7}.
\frac{\frac{17}{6}}{\frac{7-9}{7}}
Since \frac{7}{7} and \frac{9}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{17}{6}}{-\frac{2}{7}}
Subtract 9 from 7 to get -2.
\frac{17}{6}\left(-\frac{7}{2}\right)
Divide \frac{17}{6} by -\frac{2}{7} by multiplying \frac{17}{6} by the reciprocal of -\frac{2}{7}.
\frac{17\left(-7\right)}{6\times 2}
Multiply \frac{17}{6} times -\frac{7}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-119}{12}
Do the multiplications in the fraction \frac{17\left(-7\right)}{6\times 2}.
-\frac{119}{12}
Fraction \frac{-119}{12} can be rewritten as -\frac{119}{12} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}