Evaluate
-\frac{45\sqrt{374}}{187}\approx -4.65378921
Share
Copied to clipboard
\frac{\frac{8}{17}-0.55}{\sqrt{\frac{0.55\times 0.45}{850}}}
Reduce the fraction \frac{400}{850} to lowest terms by extracting and canceling out 50.
\frac{\frac{8}{17}-\frac{11}{20}}{\sqrt{\frac{0.55\times 0.45}{850}}}
Convert decimal number 0.55 to fraction \frac{55}{100}. Reduce the fraction \frac{55}{100} to lowest terms by extracting and canceling out 5.
\frac{\frac{160}{340}-\frac{187}{340}}{\sqrt{\frac{0.55\times 0.45}{850}}}
Least common multiple of 17 and 20 is 340. Convert \frac{8}{17} and \frac{11}{20} to fractions with denominator 340.
\frac{\frac{160-187}{340}}{\sqrt{\frac{0.55\times 0.45}{850}}}
Since \frac{160}{340} and \frac{187}{340} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{27}{340}}{\sqrt{\frac{0.55\times 0.45}{850}}}
Subtract 187 from 160 to get -27.
\frac{-\frac{27}{340}}{\sqrt{\frac{0.2475}{850}}}
Multiply 0.55 and 0.45 to get 0.2475.
\frac{-\frac{27}{340}}{\sqrt{\frac{2475}{8500000}}}
Expand \frac{0.2475}{850} by multiplying both numerator and the denominator by 10000.
\frac{-\frac{27}{340}}{\sqrt{\frac{99}{340000}}}
Reduce the fraction \frac{2475}{8500000} to lowest terms by extracting and canceling out 25.
\frac{-\frac{27}{340}}{\frac{\sqrt{99}}{\sqrt{340000}}}
Rewrite the square root of the division \sqrt{\frac{99}{340000}} as the division of square roots \frac{\sqrt{99}}{\sqrt{340000}}.
\frac{-\frac{27}{340}}{\frac{3\sqrt{11}}{\sqrt{340000}}}
Factor 99=3^{2}\times 11. Rewrite the square root of the product \sqrt{3^{2}\times 11} as the product of square roots \sqrt{3^{2}}\sqrt{11}. Take the square root of 3^{2}.
\frac{-\frac{27}{340}}{\frac{3\sqrt{11}}{100\sqrt{34}}}
Factor 340000=100^{2}\times 34. Rewrite the square root of the product \sqrt{100^{2}\times 34} as the product of square roots \sqrt{100^{2}}\sqrt{34}. Take the square root of 100^{2}.
\frac{-\frac{27}{340}}{\frac{3\sqrt{11}\sqrt{34}}{100\left(\sqrt{34}\right)^{2}}}
Rationalize the denominator of \frac{3\sqrt{11}}{100\sqrt{34}} by multiplying numerator and denominator by \sqrt{34}.
\frac{-\frac{27}{340}}{\frac{3\sqrt{11}\sqrt{34}}{100\times 34}}
The square of \sqrt{34} is 34.
\frac{-\frac{27}{340}}{\frac{3\sqrt{374}}{100\times 34}}
To multiply \sqrt{11} and \sqrt{34}, multiply the numbers under the square root.
\frac{-\frac{27}{340}}{\frac{3\sqrt{374}}{3400}}
Multiply 100 and 34 to get 3400.
\frac{-27\times 3400}{340\times 3\sqrt{374}}
Divide -\frac{27}{340} by \frac{3\sqrt{374}}{3400} by multiplying -\frac{27}{340} by the reciprocal of \frac{3\sqrt{374}}{3400}.
\frac{-9\times 10}{\sqrt{374}}
Cancel out 3\times 340 in both numerator and denominator.
\frac{-9\times 10\sqrt{374}}{\left(\sqrt{374}\right)^{2}}
Rationalize the denominator of \frac{-9\times 10}{\sqrt{374}} by multiplying numerator and denominator by \sqrt{374}.
\frac{-9\times 10\sqrt{374}}{374}
The square of \sqrt{374} is 374.
\frac{-90\sqrt{374}}{374}
Multiply -9 and 10 to get -90.
-\frac{45}{187}\sqrt{374}
Divide -90\sqrt{374} by 374 to get -\frac{45}{187}\sqrt{374}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}