Evaluate
2\sqrt{10}\approx 6.32455532
Share
Copied to clipboard
\frac{\frac{3\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\times \frac{8}{\sqrt{18}}}{\frac{\sqrt{6}}{\sqrt{5}}}
Rationalize the denominator of \frac{3\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{3\sqrt{3}\sqrt{2}}{2}\times \frac{8}{\sqrt{18}}}{\frac{\sqrt{6}}{\sqrt{5}}}
The square of \sqrt{2} is 2.
\frac{\frac{3\sqrt{6}}{2}\times \frac{8}{\sqrt{18}}}{\frac{\sqrt{6}}{\sqrt{5}}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{3\sqrt{6}}{2}\times \frac{8}{3\sqrt{2}}}{\frac{\sqrt{6}}{\sqrt{5}}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\frac{3\sqrt{6}}{2}\times \frac{8\sqrt{2}}{3\left(\sqrt{2}\right)^{2}}}{\frac{\sqrt{6}}{\sqrt{5}}}
Rationalize the denominator of \frac{8}{3\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{3\sqrt{6}}{2}\times \frac{8\sqrt{2}}{3\times 2}}{\frac{\sqrt{6}}{\sqrt{5}}}
The square of \sqrt{2} is 2.
\frac{\frac{3\sqrt{6}}{2}\times \frac{4\sqrt{2}}{3}}{\frac{\sqrt{6}}{\sqrt{5}}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{3\sqrt{6}\times 4\sqrt{2}}{2\times 3}}{\frac{\sqrt{6}}{\sqrt{5}}}
Multiply \frac{3\sqrt{6}}{2} times \frac{4\sqrt{2}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{2\sqrt{2}\sqrt{6}}{\frac{\sqrt{6}}{\sqrt{5}}}
Cancel out 2\times 3 in both numerator and denominator.
\frac{2\sqrt{2}\sqrt{6}}{\frac{\sqrt{6}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{6}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{2\sqrt{2}\sqrt{6}}{\frac{\sqrt{6}\sqrt{5}}{5}}
The square of \sqrt{5} is 5.
\frac{2\sqrt{2}\sqrt{6}}{\frac{\sqrt{30}}{5}}
To multiply \sqrt{6} and \sqrt{5}, multiply the numbers under the square root.
\frac{2\sqrt{2}\sqrt{2}\sqrt{3}}{\frac{\sqrt{30}}{5}}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
\frac{2\times 2\sqrt{3}}{\frac{\sqrt{30}}{5}}
Multiply \sqrt{2} and \sqrt{2} to get 2.
\frac{4\sqrt{3}}{\frac{\sqrt{30}}{5}}
Multiply 2 and 2 to get 4.
\frac{4\sqrt{3}\times 5}{\sqrt{30}}
Divide 4\sqrt{3} by \frac{\sqrt{30}}{5} by multiplying 4\sqrt{3} by the reciprocal of \frac{\sqrt{30}}{5}.
\frac{4\sqrt{3}\times 5\sqrt{30}}{\left(\sqrt{30}\right)^{2}}
Rationalize the denominator of \frac{4\sqrt{3}\times 5}{\sqrt{30}} by multiplying numerator and denominator by \sqrt{30}.
\frac{4\sqrt{3}\times 5\sqrt{30}}{30}
The square of \sqrt{30} is 30.
\frac{20\sqrt{3}\sqrt{30}}{30}
Multiply 4 and 5 to get 20.
\frac{20\sqrt{3}\sqrt{3}\sqrt{10}}{30}
Factor 30=3\times 10. Rewrite the square root of the product \sqrt{3\times 10} as the product of square roots \sqrt{3}\sqrt{10}.
\frac{20\times 3\sqrt{10}}{30}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{2}{3}\times 3\sqrt{10}
Divide 20\times 3\sqrt{10} by 30 to get \frac{2}{3}\times 3\sqrt{10}.
2\sqrt{10}
Cancel out 3 and 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}