Evaluate
-\frac{3x^{4}}{2}-\frac{7x^{3}}{3}+\frac{5x^{2}}{4}+3x
Expand
-\frac{3x^{4}}{2}-\frac{7x^{3}}{3}+\frac{5x^{2}}{4}+3x
Graph
Share
Copied to clipboard
\frac{\frac{3}{4}x^{7}-\frac{5}{8}x^{5}-\frac{3}{2}x^{4}+\frac{7}{6}x^{6}}{-\frac{1}{2}x^{3}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{24}\left(18x^{3}+28x^{2}-15x-36\right)x^{4}}{-\frac{1}{2}x^{3}}
Factor the expressions that are not already factored.
\frac{\frac{1}{24}x\left(18x^{3}+28x^{2}-15x-36\right)}{-\frac{1}{2}}
Cancel out x^{3} in both numerator and denominator.
\frac{\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x}{-\frac{1}{2}}
Expand the expression.
\frac{\left(\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x\right)\times 2}{-1}
Divide \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by -\frac{1}{2} by multiplying \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by the reciprocal of -\frac{1}{2}.
-\left(\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x\right)\times 2
Anything divided by -1 gives its opposite.
-\left(\frac{3}{2}x^{4}+\frac{7}{3}x^{3}-\frac{5}{4}x^{2}-3x\right)
Use the distributive property to multiply \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by 2.
-\frac{3}{2}x^{4}-\frac{7}{3}x^{3}+\frac{5}{4}x^{2}+3x
To find the opposite of \frac{3}{2}x^{4}+\frac{7}{3}x^{3}-\frac{5}{4}x^{2}-3x, find the opposite of each term.
\frac{\frac{3}{4}x^{7}-\frac{5}{8}x^{5}-\frac{3}{2}x^{4}+\frac{7}{6}x^{6}}{-\frac{1}{2}x^{3}}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{\frac{1}{24}\left(18x^{3}+28x^{2}-15x-36\right)x^{4}}{-\frac{1}{2}x^{3}}
Factor the expressions that are not already factored.
\frac{\frac{1}{24}x\left(18x^{3}+28x^{2}-15x-36\right)}{-\frac{1}{2}}
Cancel out x^{3} in both numerator and denominator.
\frac{\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x}{-\frac{1}{2}}
Expand the expression.
\frac{\left(\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x\right)\times 2}{-1}
Divide \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by -\frac{1}{2} by multiplying \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by the reciprocal of -\frac{1}{2}.
-\left(\frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x\right)\times 2
Anything divided by -1 gives its opposite.
-\left(\frac{3}{2}x^{4}+\frac{7}{3}x^{3}-\frac{5}{4}x^{2}-3x\right)
Use the distributive property to multiply \frac{3}{4}x^{4}+\frac{7}{6}x^{3}-\frac{5}{8}x^{2}-\frac{3}{2}x by 2.
-\frac{3}{2}x^{4}-\frac{7}{3}x^{3}+\frac{5}{4}x^{2}+3x
To find the opposite of \frac{3}{2}x^{4}+\frac{7}{3}x^{3}-\frac{5}{4}x^{2}-3x, find the opposite of each term.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}