Evaluate
\frac{8\sqrt{3}+24}{7}\approx 5.408058066
Factor
\frac{8 \sqrt{3} {(\sqrt{3} + 1)}}{7} = 5.408058065793002
Share
Copied to clipboard
\frac{24}{7\sqrt{3}}+\frac{24}{7}
Express \frac{\frac{24}{7}}{\sqrt{3}} as a single fraction.
\frac{24\sqrt{3}}{7\left(\sqrt{3}\right)^{2}}+\frac{24}{7}
Rationalize the denominator of \frac{24}{7\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{24\sqrt{3}}{7\times 3}+\frac{24}{7}
The square of \sqrt{3} is 3.
\frac{8\sqrt{3}}{7}+\frac{24}{7}
Cancel out 3 in both numerator and denominator.
\frac{8\sqrt{3}+24}{7}
Since \frac{8\sqrt{3}}{7} and \frac{24}{7} have the same denominator, add them by adding their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}