Evaluate
-\frac{132}{427}\approx -0.309133489
Factor
-\frac{132}{427} = -0.3091334894613583
Share
Copied to clipboard
\frac{\frac{1}{3}-\frac{6}{7}}{\frac{5}{4}+\frac{4}{9}}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{7}{21}-\frac{18}{21}}{\frac{5}{4}+\frac{4}{9}}
Least common multiple of 3 and 7 is 21. Convert \frac{1}{3} and \frac{6}{7} to fractions with denominator 21.
\frac{\frac{7-18}{21}}{\frac{5}{4}+\frac{4}{9}}
Since \frac{7}{21} and \frac{18}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{11}{21}}{\frac{5}{4}+\frac{4}{9}}
Subtract 18 from 7 to get -11.
\frac{-\frac{11}{21}}{\frac{45}{36}+\frac{16}{36}}
Least common multiple of 4 and 9 is 36. Convert \frac{5}{4} and \frac{4}{9} to fractions with denominator 36.
\frac{-\frac{11}{21}}{\frac{45+16}{36}}
Since \frac{45}{36} and \frac{16}{36} have the same denominator, add them by adding their numerators.
\frac{-\frac{11}{21}}{\frac{61}{36}}
Add 45 and 16 to get 61.
-\frac{11}{21}\times \frac{36}{61}
Divide -\frac{11}{21} by \frac{61}{36} by multiplying -\frac{11}{21} by the reciprocal of \frac{61}{36}.
\frac{-11\times 36}{21\times 61}
Multiply -\frac{11}{21} times \frac{36}{61} by multiplying numerator times numerator and denominator times denominator.
\frac{-396}{1281}
Do the multiplications in the fraction \frac{-11\times 36}{21\times 61}.
-\frac{132}{427}
Reduce the fraction \frac{-396}{1281} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}