Solve for x
x = \frac{61 {(\sqrt{5} - 1)}}{9} \approx 8.37779407
Graph
Quiz
Linear Equation
5 problems similar to:
\frac{ \frac{ 122 }{ 9 } }{ x } = \frac{ 1+ \sqrt{ 5 } }{ 2 }
Share
Copied to clipboard
2\times \frac{122}{9}=x\left(1+\sqrt{5}\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2x, the least common multiple of x,2.
\frac{2\times 122}{9}=x\left(1+\sqrt{5}\right)
Express 2\times \frac{122}{9} as a single fraction.
\frac{244}{9}=x\left(1+\sqrt{5}\right)
Multiply 2 and 122 to get 244.
\frac{244}{9}=x+x\sqrt{5}
Use the distributive property to multiply x by 1+\sqrt{5}.
x+x\sqrt{5}=\frac{244}{9}
Swap sides so that all variable terms are on the left hand side.
\left(1+\sqrt{5}\right)x=\frac{244}{9}
Combine all terms containing x.
\left(\sqrt{5}+1\right)x=\frac{244}{9}
The equation is in standard form.
\frac{\left(\sqrt{5}+1\right)x}{\sqrt{5}+1}=\frac{\frac{244}{9}}{\sqrt{5}+1}
Divide both sides by 1+\sqrt{5}.
x=\frac{\frac{244}{9}}{\sqrt{5}+1}
Dividing by 1+\sqrt{5} undoes the multiplication by 1+\sqrt{5}.
x=\frac{61\sqrt{5}-61}{9}
Divide \frac{244}{9} by 1+\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}