Skip to main content
Solve for x
Tick mark Image
Graph

Share

\frac{11}{8}\left(\frac{3}{11}+\frac{1}{6}+\frac{3}{2}\right)=\frac{3}{50}xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{11}{8}\left(\frac{18}{66}+\frac{11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Least common multiple of 11 and 6 is 66. Convert \frac{3}{11} and \frac{1}{6} to fractions with denominator 66.
\frac{11}{8}\left(\frac{18+11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Since \frac{18}{66} and \frac{11}{66} have the same denominator, add them by adding their numerators.
\frac{11}{8}\left(\frac{29}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Add 18 and 11 to get 29.
\frac{11}{8}\left(\frac{29}{66}+\frac{99}{66}\right)=\frac{3}{50}xx
Least common multiple of 66 and 2 is 66. Convert \frac{29}{66} and \frac{3}{2} to fractions with denominator 66.
\frac{11}{8}\times \frac{29+99}{66}=\frac{3}{50}xx
Since \frac{29}{66} and \frac{99}{66} have the same denominator, add them by adding their numerators.
\frac{11}{8}\times \frac{128}{66}=\frac{3}{50}xx
Add 29 and 99 to get 128.
\frac{11}{8}\times \frac{64}{33}=\frac{3}{50}xx
Reduce the fraction \frac{128}{66} to lowest terms by extracting and canceling out 2.
\frac{11\times 64}{8\times 33}=\frac{3}{50}xx
Multiply \frac{11}{8} times \frac{64}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{704}{264}=\frac{3}{50}xx
Do the multiplications in the fraction \frac{11\times 64}{8\times 33}.
\frac{8}{3}=\frac{3}{50}xx
Reduce the fraction \frac{704}{264} to lowest terms by extracting and canceling out 88.
\frac{8}{3}=\frac{3}{50}x^{2}
Multiply x and x to get x^{2}.
\frac{3}{50}x^{2}=\frac{8}{3}
Swap sides so that all variable terms are on the left hand side.
x^{2}=\frac{8}{3}\times \frac{50}{3}
Multiply both sides by \frac{50}{3}, the reciprocal of \frac{3}{50}.
x^{2}=\frac{8\times 50}{3\times 3}
Multiply \frac{8}{3} times \frac{50}{3} by multiplying numerator times numerator and denominator times denominator.
x^{2}=\frac{400}{9}
Do the multiplications in the fraction \frac{8\times 50}{3\times 3}.
x=\frac{20}{3} x=-\frac{20}{3}
Take the square root of both sides of the equation.
\frac{11}{8}\left(\frac{3}{11}+\frac{1}{6}+\frac{3}{2}\right)=\frac{3}{50}xx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{11}{8}\left(\frac{18}{66}+\frac{11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Least common multiple of 11 and 6 is 66. Convert \frac{3}{11} and \frac{1}{6} to fractions with denominator 66.
\frac{11}{8}\left(\frac{18+11}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Since \frac{18}{66} and \frac{11}{66} have the same denominator, add them by adding their numerators.
\frac{11}{8}\left(\frac{29}{66}+\frac{3}{2}\right)=\frac{3}{50}xx
Add 18 and 11 to get 29.
\frac{11}{8}\left(\frac{29}{66}+\frac{99}{66}\right)=\frac{3}{50}xx
Least common multiple of 66 and 2 is 66. Convert \frac{29}{66} and \frac{3}{2} to fractions with denominator 66.
\frac{11}{8}\times \frac{29+99}{66}=\frac{3}{50}xx
Since \frac{29}{66} and \frac{99}{66} have the same denominator, add them by adding their numerators.
\frac{11}{8}\times \frac{128}{66}=\frac{3}{50}xx
Add 29 and 99 to get 128.
\frac{11}{8}\times \frac{64}{33}=\frac{3}{50}xx
Reduce the fraction \frac{128}{66} to lowest terms by extracting and canceling out 2.
\frac{11\times 64}{8\times 33}=\frac{3}{50}xx
Multiply \frac{11}{8} times \frac{64}{33} by multiplying numerator times numerator and denominator times denominator.
\frac{704}{264}=\frac{3}{50}xx
Do the multiplications in the fraction \frac{11\times 64}{8\times 33}.
\frac{8}{3}=\frac{3}{50}xx
Reduce the fraction \frac{704}{264} to lowest terms by extracting and canceling out 88.
\frac{8}{3}=\frac{3}{50}x^{2}
Multiply x and x to get x^{2}.
\frac{3}{50}x^{2}=\frac{8}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{3}{50}x^{2}-\frac{8}{3}=0
Subtract \frac{8}{3} from both sides.
x=\frac{0±\sqrt{0^{2}-4\times \frac{3}{50}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{3}{50} for a, 0 for b, and -\frac{8}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times \frac{3}{50}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
Square 0.
x=\frac{0±\sqrt{-\frac{6}{25}\left(-\frac{8}{3}\right)}}{2\times \frac{3}{50}}
Multiply -4 times \frac{3}{50}.
x=\frac{0±\sqrt{\frac{16}{25}}}{2\times \frac{3}{50}}
Multiply -\frac{6}{25} times -\frac{8}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{4}{5}}{2\times \frac{3}{50}}
Take the square root of \frac{16}{25}.
x=\frac{0±\frac{4}{5}}{\frac{3}{25}}
Multiply 2 times \frac{3}{50}.
x=\frac{20}{3}
Now solve the equation x=\frac{0±\frac{4}{5}}{\frac{3}{25}} when ± is plus.
x=-\frac{20}{3}
Now solve the equation x=\frac{0±\frac{4}{5}}{\frac{3}{25}} when ± is minus.
x=\frac{20}{3} x=-\frac{20}{3}
The equation is now solved.