Evaluate
-\frac{2\left(3y-2\right)}{3y+4}
Expand
-\frac{2\left(3y-2\right)}{3y+4}
Graph
Share
Copied to clipboard
\frac{\frac{2}{2y}-\frac{3y}{2y}}{\frac{1}{y}+\frac{3}{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 2 is 2y. Multiply \frac{1}{y} times \frac{2}{2}. Multiply \frac{3}{2} times \frac{y}{y}.
\frac{\frac{2-3y}{2y}}{\frac{1}{y}+\frac{3}{4}}
Since \frac{2}{2y} and \frac{3y}{2y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-3y}{2y}}{\frac{4}{4y}+\frac{3y}{4y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 4 is 4y. Multiply \frac{1}{y} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{y}{y}.
\frac{\frac{2-3y}{2y}}{\frac{4+3y}{4y}}
Since \frac{4}{4y} and \frac{3y}{4y} have the same denominator, add them by adding their numerators.
\frac{\left(2-3y\right)\times 4y}{2y\left(4+3y\right)}
Divide \frac{2-3y}{2y} by \frac{4+3y}{4y} by multiplying \frac{2-3y}{2y} by the reciprocal of \frac{4+3y}{4y}.
\frac{2\left(-3y+2\right)}{3y+4}
Cancel out 2y in both numerator and denominator.
\frac{-6y+4}{3y+4}
Use the distributive property to multiply 2 by -3y+2.
\frac{\frac{2}{2y}-\frac{3y}{2y}}{\frac{1}{y}+\frac{3}{4}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 2 is 2y. Multiply \frac{1}{y} times \frac{2}{2}. Multiply \frac{3}{2} times \frac{y}{y}.
\frac{\frac{2-3y}{2y}}{\frac{1}{y}+\frac{3}{4}}
Since \frac{2}{2y} and \frac{3y}{2y} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2-3y}{2y}}{\frac{4}{4y}+\frac{3y}{4y}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y and 4 is 4y. Multiply \frac{1}{y} times \frac{4}{4}. Multiply \frac{3}{4} times \frac{y}{y}.
\frac{\frac{2-3y}{2y}}{\frac{4+3y}{4y}}
Since \frac{4}{4y} and \frac{3y}{4y} have the same denominator, add them by adding their numerators.
\frac{\left(2-3y\right)\times 4y}{2y\left(4+3y\right)}
Divide \frac{2-3y}{2y} by \frac{4+3y}{4y} by multiplying \frac{2-3y}{2y} by the reciprocal of \frac{4+3y}{4y}.
\frac{2\left(-3y+2\right)}{3y+4}
Cancel out 2y in both numerator and denominator.
\frac{-6y+4}{3y+4}
Use the distributive property to multiply 2 by -3y+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}