Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factor \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Since \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} and \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Do the multiplications in 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine like terms in 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Express \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} as a single fraction.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Factor the expressions that are not already factored.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Cancel out x in both numerator and denominator.
\frac{-x-4}{x^{2}+4x+1}
Expand the expression.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factor \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Since \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} and \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Do the multiplications in 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine like terms in 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Express \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} as a single fraction.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Factor the expressions that are not already factored.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Cancel out x in both numerator and denominator.
\frac{-x-4}{x^{2}+4x+1}
Expand the expression.