\frac{ \frac{ 1 }{ \sqrt{ 2 } } }{ } + \frac{ 2 }{ 1 } - \frac{ 5 }{ 2 }
Evaluate
\frac{\sqrt{2}-1}{2}\approx 0.207106781
Factor
\frac{\sqrt{2} - 1}{2} = 0.20710678118654757
Share
Copied to clipboard
\frac{\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}{1}+\frac{2}{1}-\frac{5}{2}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{\sqrt{2}}{2}}{1}+\frac{2}{1}-\frac{5}{2}
The square of \sqrt{2} is 2.
\frac{\sqrt{2}}{2}+\frac{2}{1}-\frac{5}{2}
Anything divided by one gives itself.
\frac{\sqrt{2}}{2}+2-\frac{5}{2}
Anything divided by one gives itself.
\frac{\sqrt{2}}{2}+\frac{4}{2}-\frac{5}{2}
Convert 2 to fraction \frac{4}{2}.
\frac{\sqrt{2}}{2}+\frac{4-5}{2}
Since \frac{4}{2} and \frac{5}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\sqrt{2}}{2}-\frac{1}{2}
Subtract 5 from 4 to get -1.
\frac{\sqrt{2}-1}{2}
Since \frac{\sqrt{2}}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}