Evaluate
\frac{5\sqrt{2}}{3}\approx 2.357022604
Share
Copied to clipboard
\frac{\frac{2}{\sqrt{3}}+\frac{1}{\frac{\sqrt{3}}{3}}}{\sqrt{\frac{3}{2}}}
Divide 1 by \frac{\sqrt{3}}{2} by multiplying 1 by the reciprocal of \frac{\sqrt{3}}{2}.
\frac{\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{\frac{\sqrt{3}}{3}}}{\sqrt{\frac{3}{2}}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}+\frac{1}{\frac{\sqrt{3}}{3}}}{\sqrt{\frac{3}{2}}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}+\frac{3}{\sqrt{3}}}{\sqrt{\frac{3}{2}}}
Divide 1 by \frac{\sqrt{3}}{3} by multiplying 1 by the reciprocal of \frac{\sqrt{3}}{3}.
\frac{\frac{2\sqrt{3}}{3}+\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{3}{2}}}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{2\sqrt{3}}{3}+\frac{3\sqrt{3}}{3}}{\sqrt{\frac{3}{2}}}
The square of \sqrt{3} is 3.
\frac{\frac{2\sqrt{3}}{3}+\sqrt{3}}{\sqrt{\frac{3}{2}}}
Cancel out 3 and 3.
\frac{\frac{5}{3}\sqrt{3}}{\sqrt{\frac{3}{2}}}
Combine \frac{2\sqrt{3}}{3} and \sqrt{3} to get \frac{5}{3}\sqrt{3}.
\frac{\frac{5}{3}\sqrt{3}}{\frac{\sqrt{3}}{\sqrt{2}}}
Rewrite the square root of the division \sqrt{\frac{3}{2}} as the division of square roots \frac{\sqrt{3}}{\sqrt{2}}.
\frac{\frac{5}{3}\sqrt{3}}{\frac{\sqrt{3}\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{\sqrt{3}}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\frac{5}{3}\sqrt{3}}{\frac{\sqrt{3}\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{\frac{5}{3}\sqrt{3}}{\frac{\sqrt{6}}{2}}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{\frac{5}{3}\sqrt{3}\times 2}{\sqrt{6}}
Divide \frac{5}{3}\sqrt{3} by \frac{\sqrt{6}}{2} by multiplying \frac{5}{3}\sqrt{3} by the reciprocal of \frac{\sqrt{6}}{2}.
\frac{\frac{5}{3}\sqrt{3}\times 2\sqrt{6}}{\left(\sqrt{6}\right)^{2}}
Rationalize the denominator of \frac{\frac{5}{3}\sqrt{3}\times 2}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\frac{\frac{5}{3}\sqrt{3}\times 2\sqrt{6}}{6}
The square of \sqrt{6} is 6.
\frac{\frac{5\times 2}{3}\sqrt{3}\sqrt{6}}{6}
Express \frac{5}{3}\times 2 as a single fraction.
\frac{\frac{10}{3}\sqrt{3}\sqrt{6}}{6}
Multiply 5 and 2 to get 10.
\frac{\frac{10}{3}\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{\frac{10}{3}\times 3\sqrt{2}}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{10\sqrt{2}}{6}
Cancel out 3 and 3.
\frac{5}{3}\sqrt{2}
Divide 10\sqrt{2} by 6 to get \frac{5}{3}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}