Skip to main content
Evaluate
Tick mark Image

Share

\frac{\frac{0.5\times 42.25}{0.866}+0.5\times 9.8\cot(30)}{2\cos(30)}
Calculate 6.5 to the power of 2 and get 42.25.
\frac{\frac{21.125}{0.866}+0.5\times 9.8\cot(30)}{2\cos(30)}
Multiply 0.5 and 42.25 to get 21.125.
\frac{\frac{21125}{866}+0.5\times 9.8\cot(30)}{2\cos(30)}
Expand \frac{21.125}{0.866} by multiplying both numerator and the denominator by 1000.
\frac{\frac{21125}{866}+4.9\cot(30)}{2\cos(30)}
Multiply 0.5 and 9.8 to get 4.9.
\frac{\frac{21125}{866}+4.9\sqrt{3}}{2\cos(30)}
Get the value of \cot(30) from trigonometric values table.
\frac{\frac{21125}{866}+4.9\sqrt{3}}{2\times \frac{\sqrt{3}}{2}}
Get the value of \cos(30) from trigonometric values table.
\frac{\frac{21125}{866}+4.9\sqrt{3}}{\sqrt{3}}
Cancel out 2 and 2.
\frac{\left(\frac{21125}{866}+4.9\sqrt{3}\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\frac{21125}{866}+4.9\sqrt{3}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(\frac{21125}{866}+4.9\sqrt{3}\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\frac{21125}{866}\sqrt{3}+4.9\left(\sqrt{3}\right)^{2}}{3}
Use the distributive property to multiply \frac{21125}{866}+4.9\sqrt{3} by \sqrt{3}.
\frac{\frac{21125}{866}\sqrt{3}+4.9\times 3}{3}
The square of \sqrt{3} is 3.
\frac{\frac{21125}{866}\sqrt{3}+14.7}{3}
Multiply 4.9 and 3 to get 14.7.