Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}-x
Divide \frac{x^{2}+2x+1}{x^{2}-1} by \frac{\left(-x-1\right)^{2}}{x+1} by multiplying \frac{x^{2}+2x+1}{x^{2}-1} by the reciprocal of \frac{\left(-x-1\right)^{2}}{x+1}.
\frac{\left(x+1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(-x-1\right)^{2}}-x
Factor the expressions that are not already factored in \frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-x
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-\frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} and \frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x}{\left(x-1\right)\left(-x-1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{\left(x-1\right)\left(-x-1\right)^{2}}
Combine like terms in x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{x^{3}+x^{2}-x-1}
Expand \left(x-1\right)\left(-x-1\right)^{2}.
\frac{\left(x+1\right)^{2}\left(-x^{2}+x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x^{2}+x+1}{x-1}
Cancel out \left(x+1\right)^{2} in both numerator and denominator.
\frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}-x
Divide \frac{x^{2}+2x+1}{x^{2}-1} by \frac{\left(-x-1\right)^{2}}{x+1} by multiplying \frac{x^{2}+2x+1}{x^{2}-1} by the reciprocal of \frac{\left(-x-1\right)^{2}}{x+1}.
\frac{\left(x+1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(-x-1\right)^{2}}-x
Factor the expressions that are not already factored in \frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-x
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-\frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} and \frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x}{\left(x-1\right)\left(-x-1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{\left(x-1\right)\left(-x-1\right)^{2}}
Combine like terms in x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{x^{3}+x^{2}-x-1}
Expand \left(x-1\right)\left(-x-1\right)^{2}.
\frac{\left(x+1\right)^{2}\left(-x^{2}+x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x^{2}+x+1}{x-1}
Cancel out \left(x+1\right)^{2} in both numerator and denominator.