Evaluate
\frac{1+x-x^{2}}{x-1}
Expand
\frac{1+x-x^{2}}{x-1}
Graph
Share
Copied to clipboard
\frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}-x
Divide \frac{x^{2}+2x+1}{x^{2}-1} by \frac{\left(-x-1\right)^{2}}{x+1} by multiplying \frac{x^{2}+2x+1}{x^{2}-1} by the reciprocal of \frac{\left(-x-1\right)^{2}}{x+1}.
\frac{\left(x+1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(-x-1\right)^{2}}-x
Factor the expressions that are not already factored in \frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-x
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-\frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} and \frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x}{\left(x-1\right)\left(-x-1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{\left(x-1\right)\left(-x-1\right)^{2}}
Combine like terms in x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{x^{3}+x^{2}-x-1}
Expand \left(x-1\right)\left(-x-1\right)^{2}.
\frac{\left(x+1\right)^{2}\left(-x^{2}+x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x^{2}+x+1}{x-1}
Cancel out \left(x+1\right)^{2} in both numerator and denominator.
\frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}-x
Divide \frac{x^{2}+2x+1}{x^{2}-1} by \frac{\left(-x-1\right)^{2}}{x+1} by multiplying \frac{x^{2}+2x+1}{x^{2}-1} by the reciprocal of \frac{\left(-x-1\right)^{2}}{x+1}.
\frac{\left(x+1\right)\left(x+1\right)^{2}}{\left(x-1\right)\left(x+1\right)\left(-x-1\right)^{2}}-x
Factor the expressions that are not already factored in \frac{\left(x^{2}+2x+1\right)\left(x+1\right)}{\left(x^{2}-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-x
Cancel out x+1 in both numerator and denominator.
\frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}-\frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply x times \frac{\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}.
\frac{\left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}}
Since \frac{\left(x+1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} and \frac{x\left(x-1\right)\left(-x-1\right)^{2}}{\left(x-1\right)\left(-x-1\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x}{\left(x-1\right)\left(-x-1\right)^{2}}
Do the multiplications in \left(x+1\right)^{2}-x\left(x-1\right)\left(-x-1\right)^{2}.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{\left(x-1\right)\left(-x-1\right)^{2}}
Combine like terms in x^{2}+2x+1-x^{4}-2x^{3}-x^{2}+x^{3}+2x^{2}+x.
\frac{2x^{2}+3x+1-x^{4}-x^{3}}{x^{3}+x^{2}-x-1}
Expand \left(x-1\right)\left(-x-1\right)^{2}.
\frac{\left(x+1\right)^{2}\left(-x^{2}+x+1\right)}{\left(x-1\right)\left(x+1\right)^{2}}
Factor the expressions that are not already factored.
\frac{-x^{2}+x+1}{x-1}
Cancel out \left(x+1\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}