Evaluate
\frac{a-2}{a}
Expand
\frac{a-2}{a}
Share
Copied to clipboard
\frac{\frac{a^{2}-4}{a}}{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{a^{2}-4}.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{a-2}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{\left(a-2\right)\left(a-2\right)}}\times \frac{1}{a^{2}-4a+4}
Multiply \frac{a+2}{a-2} times \frac{1}{a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Divide \frac{a^{2}-4}{a} by \frac{a+2}{\left(a-2\right)\left(a-2\right)} by multiplying \frac{a^{2}-4}{a} by the reciprocal of \frac{a+2}{\left(a-2\right)\left(a-2\right)}.
\frac{\left(a+2\right)\left(a-2\right)^{3}}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}.
\frac{\left(a-2\right)^{3}}{a}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-2\right)^{3}}{a\left(a^{2}-4a+4\right)}
Multiply \frac{\left(a-2\right)^{3}}{a} times \frac{1}{a^{2}-4a+4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)^{3}}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{a-2}{a}
Cancel out \left(a-2\right)^{2} in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{a^{2}-4}.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{a-2}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{\left(a-2\right)\left(a-2\right)}}\times \frac{1}{a^{2}-4a+4}
Multiply \frac{a+2}{a-2} times \frac{1}{a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Divide \frac{a^{2}-4}{a} by \frac{a+2}{\left(a-2\right)\left(a-2\right)} by multiplying \frac{a^{2}-4}{a} by the reciprocal of \frac{a+2}{\left(a-2\right)\left(a-2\right)}.
\frac{\left(a+2\right)\left(a-2\right)^{3}}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}.
\frac{\left(a-2\right)^{3}}{a}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-2\right)^{3}}{a\left(a^{2}-4a+4\right)}
Multiply \frac{\left(a-2\right)^{3}}{a} times \frac{1}{a^{2}-4a+4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)^{3}}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{a-2}{a}
Cancel out \left(a-2\right)^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}