Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}-4}{a}}{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{a^{2}-4}.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{a-2}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{\left(a-2\right)\left(a-2\right)}}\times \frac{1}{a^{2}-4a+4}
Multiply \frac{a+2}{a-2} times \frac{1}{a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Divide \frac{a^{2}-4}{a} by \frac{a+2}{\left(a-2\right)\left(a-2\right)} by multiplying \frac{a^{2}-4}{a} by the reciprocal of \frac{a+2}{\left(a-2\right)\left(a-2\right)}.
\frac{\left(a+2\right)\left(a-2\right)^{3}}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}.
\frac{\left(a-2\right)^{3}}{a}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-2\right)^{3}}{a\left(a^{2}-4a+4\right)}
Multiply \frac{\left(a-2\right)^{3}}{a} times \frac{1}{a^{2}-4a+4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)^{3}}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{a-2}{a}
Cancel out \left(a-2\right)^{2} in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{\left(a+2\right)^{2}}{\left(a-2\right)\left(a+2\right)}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{a^{2}+4a+4}{a^{2}-4}.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{a-2}\times \frac{1}{a-2}}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\frac{a^{2}-4}{a}}{\frac{a+2}{\left(a-2\right)\left(a-2\right)}}\times \frac{1}{a^{2}-4a+4}
Multiply \frac{a+2}{a-2} times \frac{1}{a-2} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Divide \frac{a^{2}-4}{a} by \frac{a+2}{\left(a-2\right)\left(a-2\right)} by multiplying \frac{a^{2}-4}{a} by the reciprocal of \frac{a+2}{\left(a-2\right)\left(a-2\right)}.
\frac{\left(a+2\right)\left(a-2\right)^{3}}{a\left(a+2\right)}\times \frac{1}{a^{2}-4a+4}
Factor the expressions that are not already factored in \frac{\left(a^{2}-4\right)\left(a-2\right)\left(a-2\right)}{a\left(a+2\right)}.
\frac{\left(a-2\right)^{3}}{a}\times \frac{1}{a^{2}-4a+4}
Cancel out a+2 in both numerator and denominator.
\frac{\left(a-2\right)^{3}}{a\left(a^{2}-4a+4\right)}
Multiply \frac{\left(a-2\right)^{3}}{a} times \frac{1}{a^{2}-4a+4} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(a-2\right)^{3}}{a\left(a-2\right)^{2}}
Factor the expressions that are not already factored.
\frac{a-2}{a}
Cancel out \left(a-2\right)^{2} in both numerator and denominator.