Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)^{2}}{a-2b}}{4a+2b}
Factor the expressions that are not already factored in \frac{a^{2}-4ab+4b^{2}}{a-2b}.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+a-2b}{4a+2b}
Cancel out a-2b in both numerator and denominator.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+3b}{a+3b}.
\frac{\frac{a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
Since \frac{a^{2}+6ab-9b^{2}}{a+3b} and \frac{\left(a-2b\right)\left(a+3b\right)}{a+3b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}}{a+3b}}{4a+2b}
Do the multiplications in a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right).
\frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b}
Combine like terms in a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}.
\frac{2a^{2}-15b^{2}+7ab}{\left(a+3b\right)\left(4a+2b\right)}
Express \frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b} as a single fraction.
\frac{2a^{2}-15b^{2}+7ab}{4a^{2}+14ab+6b^{2}}
Use the distributive property to multiply a+3b by 4a+2b and combine like terms.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)^{2}}{a-2b}}{4a+2b}
Factor the expressions that are not already factored in \frac{a^{2}-4ab+4b^{2}}{a-2b}.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+a-2b}{4a+2b}
Cancel out a-2b in both numerator and denominator.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+3b}{a+3b}.
\frac{\frac{a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
Since \frac{a^{2}+6ab-9b^{2}}{a+3b} and \frac{\left(a-2b\right)\left(a+3b\right)}{a+3b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}}{a+3b}}{4a+2b}
Do the multiplications in a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right).
\frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b}
Combine like terms in a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}.
\frac{2a^{2}-15b^{2}+7ab}{\left(a+3b\right)\left(4a+2b\right)}
Express \frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b} as a single fraction.
\frac{2a^{2}-15b^{2}+7ab}{4a^{2}+14ab+6b^{2}}
Use the distributive property to multiply a+3b by 4a+2b and combine like terms.