Evaluate
\frac{\left(2a-3b\right)\left(a+5b\right)}{2\left(a+3b\right)\left(2a+b\right)}
Expand
-\frac{15b^{2}-7ab-2a^{2}}{2\left(a+3b\right)\left(2a+b\right)}
Share
Copied to clipboard
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)^{2}}{a-2b}}{4a+2b}
Factor the expressions that are not already factored in \frac{a^{2}-4ab+4b^{2}}{a-2b}.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+a-2b}{4a+2b}
Cancel out a-2b in both numerator and denominator.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+3b}{a+3b}.
\frac{\frac{a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
Since \frac{a^{2}+6ab-9b^{2}}{a+3b} and \frac{\left(a-2b\right)\left(a+3b\right)}{a+3b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}}{a+3b}}{4a+2b}
Do the multiplications in a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right).
\frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b}
Combine like terms in a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}.
\frac{2a^{2}-15b^{2}+7ab}{\left(a+3b\right)\left(4a+2b\right)}
Express \frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b} as a single fraction.
\frac{2a^{2}-15b^{2}+7ab}{4a^{2}+14ab+6b^{2}}
Use the distributive property to multiply a+3b by 4a+2b and combine like terms.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)^{2}}{a-2b}}{4a+2b}
Factor the expressions that are not already factored in \frac{a^{2}-4ab+4b^{2}}{a-2b}.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+a-2b}{4a+2b}
Cancel out a-2b in both numerator and denominator.
\frac{\frac{a^{2}+6ab-9b^{2}}{a+3b}+\frac{\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
To add or subtract expressions, expand them to make their denominators the same. Multiply a-2b times \frac{a+3b}{a+3b}.
\frac{\frac{a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right)}{a+3b}}{4a+2b}
Since \frac{a^{2}+6ab-9b^{2}}{a+3b} and \frac{\left(a-2b\right)\left(a+3b\right)}{a+3b} have the same denominator, add them by adding their numerators.
\frac{\frac{a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}}{a+3b}}{4a+2b}
Do the multiplications in a^{2}+6ab-9b^{2}+\left(a-2b\right)\left(a+3b\right).
\frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b}
Combine like terms in a^{2}+6ab-9b^{2}+a^{2}+3ab-2ba-6b^{2}.
\frac{2a^{2}-15b^{2}+7ab}{\left(a+3b\right)\left(4a+2b\right)}
Express \frac{\frac{2a^{2}-15b^{2}+7ab}{a+3b}}{4a+2b} as a single fraction.
\frac{2a^{2}-15b^{2}+7ab}{4a^{2}+14ab+6b^{2}}
Use the distributive property to multiply a+3b by 4a+2b and combine like terms.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}