Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(-9\right)^{11}x}{3^{4}}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}}
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
\frac{\frac{-31381059609x}{3^{4}}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}}
Calculate -9 to the power of 11 and get -31381059609.
\frac{\frac{-31381059609x}{81}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}}
Calculate 3 to the power of 4 and get 81.
\frac{-387420489x\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}}
Divide -31381059609x by 81 to get -387420489x.
\frac{-387420489x\times 27}{\left(\frac{1}{3}\right)^{-7}}
Calculate 3 to the power of 3 and get 27.
\frac{-10460353203x}{\left(\frac{1}{3}\right)^{-7}}
Multiply -387420489 and 27 to get -10460353203.
\frac{-10460353203x}{2187}
Calculate \frac{1}{3} to the power of -7 and get 2187.
-4782969x
Divide -10460353203x by 2187 to get -4782969x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{\left(-9\right)^{11}x}{3^{4}}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}})
To multiply powers of the same base, add their exponents. Add 4 and 7 to get 11.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{-31381059609x}{3^{4}}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}})
Calculate -9 to the power of 11 and get -31381059609.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{-31381059609x}{81}\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}})
Calculate 3 to the power of 4 and get 81.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-387420489x\times 3^{3}}{\left(\frac{1}{3}\right)^{-7}})
Divide -31381059609x by 81 to get -387420489x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-387420489x\times 27}{\left(\frac{1}{3}\right)^{-7}})
Calculate 3 to the power of 3 and get 27.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-10460353203x}{\left(\frac{1}{3}\right)^{-7}})
Multiply -387420489 and 27 to get -10460353203.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-10460353203x}{2187})
Calculate \frac{1}{3} to the power of -7 and get 2187.
\frac{\mathrm{d}}{\mathrm{d}x}(-4782969x)
Divide -10460353203x by 2187 to get -4782969x.
-4782969x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-4782969x^{0}
Subtract 1 from 1.
-4782969
For any term t except 0, t^{0}=1.