Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{\frac{2\sqrt{2}}{\sqrt{12}}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{\frac{2\sqrt{2}}{2\sqrt{3}}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{\frac{\sqrt{2}}{\sqrt{3}}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
Cancel out 2 in both numerator and denominator.
\frac{\frac{\sqrt{2}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
Rationalize the denominator of \frac{\sqrt{2}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\frac{\sqrt{2}\sqrt{3}}{3}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
The square of \sqrt{3} is 3.
\frac{\frac{\sqrt{6}}{3}}{\sqrt{\frac{45}{12}}}\sqrt{\frac{5}{8}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
\frac{\frac{\sqrt{6}}{3}}{\sqrt{\frac{15}{4}}}\sqrt{\frac{5}{8}}
Reduce the fraction \frac{45}{12} to lowest terms by extracting and canceling out 3.
\frac{\frac{\sqrt{6}}{3}}{\frac{\sqrt{15}}{\sqrt{4}}}\sqrt{\frac{5}{8}}
Rewrite the square root of the division \sqrt{\frac{15}{4}} as the division of square roots \frac{\sqrt{15}}{\sqrt{4}}.
\frac{\frac{\sqrt{6}}{3}}{\frac{\sqrt{15}}{2}}\sqrt{\frac{5}{8}}
Calculate the square root of 4 and get 2.
\frac{\sqrt{6}\times 2}{3\sqrt{15}}\sqrt{\frac{5}{8}}
Divide \frac{\sqrt{6}}{3} by \frac{\sqrt{15}}{2} by multiplying \frac{\sqrt{6}}{3} by the reciprocal of \frac{\sqrt{15}}{2}.
\frac{\sqrt{6}\times 2\sqrt{15}}{3\left(\sqrt{15}\right)^{2}}\sqrt{\frac{5}{8}}
Rationalize the denominator of \frac{\sqrt{6}\times 2}{3\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{6}\times 2\sqrt{15}}{3\times 15}\sqrt{\frac{5}{8}}
The square of \sqrt{15} is 15.
\frac{\sqrt{90}\times 2}{3\times 15}\sqrt{\frac{5}{8}}
To multiply \sqrt{6} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{90}\times 2}{45}\sqrt{\frac{5}{8}}
Multiply 3 and 15 to get 45.
\frac{3\sqrt{10}\times 2}{45}\sqrt{\frac{5}{8}}
Factor 90=3^{2}\times 10. Rewrite the square root of the product \sqrt{3^{2}\times 10} as the product of square roots \sqrt{3^{2}}\sqrt{10}. Take the square root of 3^{2}.
\frac{6\sqrt{10}}{45}\sqrt{\frac{5}{8}}
Multiply 3 and 2 to get 6.
\frac{2}{15}\sqrt{10}\sqrt{\frac{5}{8}}
Divide 6\sqrt{10} by 45 to get \frac{2}{15}\sqrt{10}.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{5}}{\sqrt{8}}
Rewrite the square root of the division \sqrt{\frac{5}{8}} as the division of square roots \frac{\sqrt{5}}{\sqrt{8}}.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{5}}{2\sqrt{2}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{5}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{5}\sqrt{2}}{2\times 2}
The square of \sqrt{2} is 2.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{10}}{2\times 2}
To multiply \sqrt{5} and \sqrt{2}, multiply the numbers under the square root.
\frac{2}{15}\sqrt{10}\times \frac{\sqrt{10}}{4}
Multiply 2 and 2 to get 4.
\frac{2\sqrt{10}}{15\times 4}\sqrt{10}
Multiply \frac{2}{15} times \frac{\sqrt{10}}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\sqrt{10}}{2\times 15}\sqrt{10}
Cancel out 2 in both numerator and denominator.
\frac{\sqrt{10}}{30}\sqrt{10}
Multiply 2 and 15 to get 30.
\frac{\sqrt{10}\sqrt{10}}{30}
Express \frac{\sqrt{10}}{30}\sqrt{10} as a single fraction.
\frac{10}{30}
Multiply \sqrt{10} and \sqrt{10} to get 10.
\frac{1}{3}
Reduce the fraction \frac{10}{30} to lowest terms by extracting and canceling out 10.