Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3xy}\left(-2\right)^{3}x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Expand \left(-2x\right)^{3}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(-\frac{1}{4}y^{2}\right)^{2}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{3xy}\left(-8\right)x^{3}\times \frac{1}{16}y^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{3xy}\left(-\frac{1}{2}\right)x^{3}y^{4}
Multiply -8 and \frac{1}{16} to get -\frac{1}{2}.
\frac{-1}{3xy\times 2}x^{3}y^{4}
Multiply \frac{1}{3xy} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{3}}{3xy\times 2}y^{4}
Express \frac{-1}{3xy\times 2}x^{3} as a single fraction.
\frac{-x^{2}}{2\times 3y}y^{4}
Cancel out x in both numerator and denominator.
\frac{-x^{2}y^{4}}{2\times 3y}
Express \frac{-x^{2}}{2\times 3y}y^{4} as a single fraction.
\frac{-x^{2}y^{3}}{2\times 3}
Cancel out y in both numerator and denominator.
\frac{-x^{2}y^{3}}{6}
Multiply 2 and 3 to get 6.
\frac{1}{3xy}\left(-2\right)^{3}x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Expand \left(-2x\right)^{3}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(-\frac{1}{4}y^{2}\right)^{2}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{3xy}\left(-8\right)x^{3}\times \frac{1}{16}y^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{3xy}\left(-\frac{1}{2}\right)x^{3}y^{4}
Multiply -8 and \frac{1}{16} to get -\frac{1}{2}.
\frac{-1}{3xy\times 2}x^{3}y^{4}
Multiply \frac{1}{3xy} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{3}}{3xy\times 2}y^{4}
Express \frac{-1}{3xy\times 2}x^{3} as a single fraction.
\frac{-x^{2}}{2\times 3y}y^{4}
Cancel out x in both numerator and denominator.
\frac{-x^{2}y^{4}}{2\times 3y}
Express \frac{-x^{2}}{2\times 3y}y^{4} as a single fraction.
\frac{-x^{2}y^{3}}{2\times 3}
Cancel out y in both numerator and denominator.
\frac{-x^{2}y^{3}}{6}
Multiply 2 and 3 to get 6.