\frac{ }{ 3xy } { \left(-2x \right) }^{ 3 } { \left(- \frac{ 1 }{ 4 } { y }^{ 2 } \right) }^{ 2 }
Evaluate
-\frac{x^{2}y^{3}}{6}
Expand
-\frac{x^{2}y^{3}}{6}
Share
Copied to clipboard
\frac{1}{3xy}\left(-2\right)^{3}x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Expand \left(-2x\right)^{3}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(-\frac{1}{4}y^{2}\right)^{2}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{3xy}\left(-8\right)x^{3}\times \frac{1}{16}y^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{3xy}\left(-\frac{1}{2}\right)x^{3}y^{4}
Multiply -8 and \frac{1}{16} to get -\frac{1}{2}.
\frac{-1}{3xy\times 2}x^{3}y^{4}
Multiply \frac{1}{3xy} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{3}}{3xy\times 2}y^{4}
Express \frac{-1}{3xy\times 2}x^{3} as a single fraction.
\frac{-x^{2}}{2\times 3y}y^{4}
Cancel out x in both numerator and denominator.
\frac{-x^{2}y^{4}}{2\times 3y}
Express \frac{-x^{2}}{2\times 3y}y^{4} as a single fraction.
\frac{-x^{2}y^{3}}{2\times 3}
Cancel out y in both numerator and denominator.
\frac{-x^{2}y^{3}}{6}
Multiply 2 and 3 to get 6.
\frac{1}{3xy}\left(-2\right)^{3}x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Expand \left(-2x\right)^{3}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}y^{2}\right)^{2}
Calculate -2 to the power of 3 and get -8.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}\left(y^{2}\right)^{2}
Expand \left(-\frac{1}{4}y^{2}\right)^{2}.
\frac{1}{3xy}\left(-8\right)x^{3}\left(-\frac{1}{4}\right)^{2}y^{4}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{1}{3xy}\left(-8\right)x^{3}\times \frac{1}{16}y^{4}
Calculate -\frac{1}{4} to the power of 2 and get \frac{1}{16}.
\frac{1}{3xy}\left(-\frac{1}{2}\right)x^{3}y^{4}
Multiply -8 and \frac{1}{16} to get -\frac{1}{2}.
\frac{-1}{3xy\times 2}x^{3}y^{4}
Multiply \frac{1}{3xy} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{-x^{3}}{3xy\times 2}y^{4}
Express \frac{-1}{3xy\times 2}x^{3} as a single fraction.
\frac{-x^{2}}{2\times 3y}y^{4}
Cancel out x in both numerator and denominator.
\frac{-x^{2}y^{4}}{2\times 3y}
Express \frac{-x^{2}}{2\times 3y}y^{4} as a single fraction.
\frac{-x^{2}y^{3}}{2\times 3}
Cancel out y in both numerator and denominator.
\frac{-x^{2}y^{3}}{6}
Multiply 2 and 3 to get 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}