Evaluate
\frac{z^{2}-8z+5}{z^{2}-6z+7}
Expand
\frac{z^{2}-8z+5}{z^{2}-6z+7}
Quiz
Polynomial
5 problems similar to:
\frac { z - 8 + \frac { 5 } { z } } { z - 6 + \frac { 7 } { z } }
Share
Copied to clipboard
\frac{\frac{\left(z-8\right)z}{z}+\frac{5}{z}}{z-6+\frac{7}{z}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-8 times \frac{z}{z}.
\frac{\frac{\left(z-8\right)z+5}{z}}{z-6+\frac{7}{z}}
Since \frac{\left(z-8\right)z}{z} and \frac{5}{z} have the same denominator, add them by adding their numerators.
\frac{\frac{z^{2}-8z+5}{z}}{z-6+\frac{7}{z}}
Do the multiplications in \left(z-8\right)z+5.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{\left(z-6\right)z}{z}+\frac{7}{z}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-6 times \frac{z}{z}.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{\left(z-6\right)z+7}{z}}
Since \frac{\left(z-6\right)z}{z} and \frac{7}{z} have the same denominator, add them by adding their numerators.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{z^{2}-6z+7}{z}}
Do the multiplications in \left(z-6\right)z+7.
\frac{\left(z^{2}-8z+5\right)z}{z\left(z^{2}-6z+7\right)}
Divide \frac{z^{2}-8z+5}{z} by \frac{z^{2}-6z+7}{z} by multiplying \frac{z^{2}-8z+5}{z} by the reciprocal of \frac{z^{2}-6z+7}{z}.
\frac{z^{2}-8z+5}{z^{2}-6z+7}
Cancel out z in both numerator and denominator.
\frac{\frac{\left(z-8\right)z}{z}+\frac{5}{z}}{z-6+\frac{7}{z}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-8 times \frac{z}{z}.
\frac{\frac{\left(z-8\right)z+5}{z}}{z-6+\frac{7}{z}}
Since \frac{\left(z-8\right)z}{z} and \frac{5}{z} have the same denominator, add them by adding their numerators.
\frac{\frac{z^{2}-8z+5}{z}}{z-6+\frac{7}{z}}
Do the multiplications in \left(z-8\right)z+5.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{\left(z-6\right)z}{z}+\frac{7}{z}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-6 times \frac{z}{z}.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{\left(z-6\right)z+7}{z}}
Since \frac{\left(z-6\right)z}{z} and \frac{7}{z} have the same denominator, add them by adding their numerators.
\frac{\frac{z^{2}-8z+5}{z}}{\frac{z^{2}-6z+7}{z}}
Do the multiplications in \left(z-6\right)z+7.
\frac{\left(z^{2}-8z+5\right)z}{z\left(z^{2}-6z+7\right)}
Divide \frac{z^{2}-8z+5}{z} by \frac{z^{2}-6z+7}{z} by multiplying \frac{z^{2}-8z+5}{z} by the reciprocal of \frac{z^{2}-6z+7}{z}.
\frac{z^{2}-8z+5}{z^{2}-6z+7}
Cancel out z in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}