Evaluate
\frac{6\left(z-6\right)\left(-z^{2}+11z-26\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Expand
-\frac{6\left(z^{3}-17z^{2}+92z-156\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Share
Copied to clipboard
\frac{\frac{\left(z-3\right)\left(9-z\right)}{9-z}-\frac{z-1}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-3 times \frac{9-z}{9-z}.
\frac{\frac{\left(z-3\right)\left(9-z\right)-\left(z-1\right)}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Since \frac{\left(z-3\right)\left(9-z\right)}{9-z} and \frac{z-1}{9-z} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9z-z^{2}-27+3z-z+1}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Do the multiplications in \left(z-3\right)\left(9-z\right)-\left(z-1\right).
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Combine like terms in 9z-z^{2}-27+3z-z+1.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z\left(z-6\right)}{6\left(z-6\right)}-\frac{6\left(2-z\right)}{6\left(z-6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and z-6 is 6\left(z-6\right). Multiply \frac{z}{6} times \frac{z-6}{z-6}. Multiply \frac{2-z}{z-6} times \frac{6}{6}.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z\left(z-6\right)-6\left(2-z\right)}{6\left(z-6\right)}}
Since \frac{z\left(z-6\right)}{6\left(z-6\right)} and \frac{6\left(2-z\right)}{6\left(z-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z^{2}-6z-12+6z}{6\left(z-6\right)}}
Do the multiplications in z\left(z-6\right)-6\left(2-z\right).
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z^{2}-12}{6\left(z-6\right)}}
Combine like terms in z^{2}-6z-12+6z.
\frac{\left(11z-z^{2}-26\right)\times 6\left(z-6\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Divide \frac{11z-z^{2}-26}{9-z} by \frac{z^{2}-12}{6\left(z-6\right)} by multiplying \frac{11z-z^{2}-26}{9-z} by the reciprocal of \frac{z^{2}-12}{6\left(z-6\right)}.
\frac{\left(66z-6z^{2}-156\right)\left(z-6\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Use the distributive property to multiply 11z-z^{2}-26 by 6.
\frac{66z^{2}-396z-6z^{3}+36z^{2}-156z+936}{\left(9-z\right)\left(z^{2}-12\right)}
Apply the distributive property by multiplying each term of 66z-6z^{2}-156 by each term of z-6.
\frac{102z^{2}-396z-6z^{3}-156z+936}{\left(9-z\right)\left(z^{2}-12\right)}
Combine 66z^{2} and 36z^{2} to get 102z^{2}.
\frac{102z^{2}-552z-6z^{3}+936}{\left(9-z\right)\left(z^{2}-12\right)}
Combine -396z and -156z to get -552z.
\frac{102z^{2}-552z-6z^{3}+936}{9z^{2}-108-z^{3}+12z}
Apply the distributive property by multiplying each term of 9-z by each term of z^{2}-12.
\frac{\frac{\left(z-3\right)\left(9-z\right)}{9-z}-\frac{z-1}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
To add or subtract expressions, expand them to make their denominators the same. Multiply z-3 times \frac{9-z}{9-z}.
\frac{\frac{\left(z-3\right)\left(9-z\right)-\left(z-1\right)}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Since \frac{\left(z-3\right)\left(9-z\right)}{9-z} and \frac{z-1}{9-z} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{9z-z^{2}-27+3z-z+1}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Do the multiplications in \left(z-3\right)\left(9-z\right)-\left(z-1\right).
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z}{6}-\frac{2-z}{z-6}}
Combine like terms in 9z-z^{2}-27+3z-z+1.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z\left(z-6\right)}{6\left(z-6\right)}-\frac{6\left(2-z\right)}{6\left(z-6\right)}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6 and z-6 is 6\left(z-6\right). Multiply \frac{z}{6} times \frac{z-6}{z-6}. Multiply \frac{2-z}{z-6} times \frac{6}{6}.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z\left(z-6\right)-6\left(2-z\right)}{6\left(z-6\right)}}
Since \frac{z\left(z-6\right)}{6\left(z-6\right)} and \frac{6\left(2-z\right)}{6\left(z-6\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z^{2}-6z-12+6z}{6\left(z-6\right)}}
Do the multiplications in z\left(z-6\right)-6\left(2-z\right).
\frac{\frac{11z-z^{2}-26}{9-z}}{\frac{z^{2}-12}{6\left(z-6\right)}}
Combine like terms in z^{2}-6z-12+6z.
\frac{\left(11z-z^{2}-26\right)\times 6\left(z-6\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Divide \frac{11z-z^{2}-26}{9-z} by \frac{z^{2}-12}{6\left(z-6\right)} by multiplying \frac{11z-z^{2}-26}{9-z} by the reciprocal of \frac{z^{2}-12}{6\left(z-6\right)}.
\frac{\left(66z-6z^{2}-156\right)\left(z-6\right)}{\left(9-z\right)\left(z^{2}-12\right)}
Use the distributive property to multiply 11z-z^{2}-26 by 6.
\frac{66z^{2}-396z-6z^{3}+36z^{2}-156z+936}{\left(9-z\right)\left(z^{2}-12\right)}
Apply the distributive property by multiplying each term of 66z-6z^{2}-156 by each term of z-6.
\frac{102z^{2}-396z-6z^{3}-156z+936}{\left(9-z\right)\left(z^{2}-12\right)}
Combine 66z^{2} and 36z^{2} to get 102z^{2}.
\frac{102z^{2}-552z-6z^{3}+936}{\left(9-z\right)\left(z^{2}-12\right)}
Combine -396z and -156z to get -552z.
\frac{102z^{2}-552z-6z^{3}+936}{9z^{2}-108-z^{3}+12z}
Apply the distributive property by multiplying each term of 9-z by each term of z^{2}-12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}