Solve for u
u=\epsilon +\frac{z}{y}
y\neq 0
Solve for y
\left\{\begin{matrix}y=-\frac{z}{\epsilon -u}\text{, }&z\neq 0\text{ and }\epsilon \neq u\\y\neq 0\text{, }&\epsilon =u\text{ and }z=0\end{matrix}\right.
Share
Copied to clipboard
z+y\epsilon =uy
Multiply both sides of the equation by y.
uy=z+y\epsilon
Swap sides so that all variable terms are on the left hand side.
yu=y\epsilon +z
The equation is in standard form.
\frac{yu}{y}=\frac{y\epsilon +z}{y}
Divide both sides by y.
u=\frac{y\epsilon +z}{y}
Dividing by y undoes the multiplication by y.
u=\epsilon +\frac{z}{y}
Divide \epsilon y+z by y.
z+y\epsilon =uy
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
z+y\epsilon -uy=0
Subtract uy from both sides.
y\epsilon -uy=-z
Subtract z from both sides. Anything subtracted from zero gives its negation.
\left(\epsilon -u\right)y=-z
Combine all terms containing y.
\frac{\left(\epsilon -u\right)y}{\epsilon -u}=-\frac{z}{\epsilon -u}
Divide both sides by \epsilon -u.
y=-\frac{z}{\epsilon -u}
Dividing by \epsilon -u undoes the multiplication by \epsilon -u.
y=-\frac{z}{\epsilon -u}\text{, }y\neq 0
Variable y cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}