Solve for g
\left\{\begin{matrix}g=-\frac{s\left(x+1\right)}{sx^{3}+sx^{2}-sxz-xz-sz}\text{, }&\left(x\neq -1\text{ and }s\neq 0\text{ and }x\neq 0\text{ and }z\neq \frac{s\left(x+1\right)x^{2}}{sx+x+s}\text{ and }z\neq \left(x+1\right)x^{2}\right)\text{ or }\left(x\neq -1\text{ and }s\neq 0\text{ and }x\neq 0\text{ and }z\neq \frac{s\left(x+1\right)x^{2}}{sx+x+s}\text{ and }s\neq -1\right)\text{ or }\left(x=-\frac{s}{s+1}\text{ and }s\neq 0\text{ and }s\neq -1\right)\\g\neq 0\text{, }&x\neq -1\text{ and }x\neq 0\text{ and }s=0\text{ and }z=0\end{matrix}\right.
Solve for s
\left\{\begin{matrix}s=\frac{gxz}{\left(x+1\right)\left(gx^{2}-gz+1\right)}\text{, }&x\neq -1\text{ and }z\neq x^{2}+\frac{1}{g}\text{ and }x\neq 0\text{ and }g\neq 0\\s\in \mathrm{R}\text{, }&g=-\frac{1}{x^{2}}\text{ and }z=0\text{ and }x\neq -1\text{ and }x\neq 0\end{matrix}\right.
Share
Copied to clipboard
gxz+\left(gx+g\right)sz=xsgx\left(x+1\right)+\left(x+1\right)s
Variable g cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by gx\left(x+1\right), the least common multiple of x+1,x,xg.
gxz+\left(gxs+gs\right)z=xsgx\left(x+1\right)+\left(x+1\right)s
Use the distributive property to multiply gx+g by s.
gxz+gxsz+gsz=xsgx\left(x+1\right)+\left(x+1\right)s
Use the distributive property to multiply gxs+gs by z.
gxz+gxsz+gsz=x^{2}sg\left(x+1\right)+\left(x+1\right)s
Multiply x and x to get x^{2}.
gxz+gxsz+gsz=sgx^{3}+x^{2}sg+\left(x+1\right)s
Use the distributive property to multiply x^{2}sg by x+1.
gxz+gxsz+gsz=sgx^{3}+x^{2}sg+xs+s
Use the distributive property to multiply x+1 by s.
gxz+gxsz+gsz-sgx^{3}=x^{2}sg+xs+s
Subtract sgx^{3} from both sides.
gxz+gxsz+gsz-sgx^{3}-x^{2}sg=xs+s
Subtract x^{2}sg from both sides.
-gsx^{3}-gsx^{2}+gsxz+gxz+gsz=sx+s
Reorder the terms.
\left(-sx^{3}-sx^{2}+sxz+xz+sz\right)g=sx+s
Combine all terms containing g.
\left(sz+xz+sxz-sx^{2}-sx^{3}\right)g=sx+s
The equation is in standard form.
\frac{\left(sz+xz+sxz-sx^{2}-sx^{3}\right)g}{sz+xz+sxz-sx^{2}-sx^{3}}=\frac{sx+s}{sz+xz+sxz-sx^{2}-sx^{3}}
Divide both sides by zsx+zx+zs-sx^{3}-sx^{2}.
g=\frac{sx+s}{sz+xz+sxz-sx^{2}-sx^{3}}
Dividing by zsx+zx+zs-sx^{3}-sx^{2} undoes the multiplication by zsx+zx+zs-sx^{3}-sx^{2}.
g=\frac{s\left(x+1\right)}{sz+xz+sxz-sx^{2}-sx^{3}}
Divide sx+s by zsx+zx+zs-sx^{3}-sx^{2}.
g=\frac{s\left(x+1\right)}{sz+xz+sxz-sx^{2}-sx^{3}}\text{, }g\neq 0
Variable g cannot be equal to 0.
gxz+\left(gx+g\right)sz=xsgx\left(x+1\right)+\left(x+1\right)s
Multiply both sides of the equation by gx\left(x+1\right), the least common multiple of x+1,x,xg.
gxz+\left(gxs+gs\right)z=xsgx\left(x+1\right)+\left(x+1\right)s
Use the distributive property to multiply gx+g by s.
gxz+gxsz+gsz=xsgx\left(x+1\right)+\left(x+1\right)s
Use the distributive property to multiply gxs+gs by z.
gxz+gxsz+gsz=x^{2}sg\left(x+1\right)+\left(x+1\right)s
Multiply x and x to get x^{2}.
gxz+gxsz+gsz=sgx^{3}+x^{2}sg+\left(x+1\right)s
Use the distributive property to multiply x^{2}sg by x+1.
gxz+gxsz+gsz=sgx^{3}+x^{2}sg+xs+s
Use the distributive property to multiply x+1 by s.
gxz+gxsz+gsz-sgx^{3}=x^{2}sg+xs+s
Subtract sgx^{3} from both sides.
gxz+gxsz+gsz-sgx^{3}-x^{2}sg=xs+s
Subtract x^{2}sg from both sides.
gxz+gxsz+gsz-sgx^{3}-x^{2}sg-xs=s
Subtract xs from both sides.
gxz+gxsz+gsz-sgx^{3}-x^{2}sg-xs-s=0
Subtract s from both sides.
gxsz+gsz-sgx^{3}-x^{2}sg-xs-s=-gxz
Subtract gxz from both sides. Anything subtracted from zero gives its negation.
\left(gxz+gz-gx^{3}-x^{2}g-x-1\right)s=-gxz
Combine all terms containing s.
\left(-gx^{3}-gx^{2}+gxz-x+gz-1\right)s=-gxz
The equation is in standard form.
\frac{\left(-gx^{3}-gx^{2}+gxz-x+gz-1\right)s}{-gx^{3}-gx^{2}+gxz-x+gz-1}=-\frac{gxz}{-gx^{3}-gx^{2}+gxz-x+gz-1}
Divide both sides by xzg-gx^{3}-x+zg-x^{2}g-1.
s=-\frac{gxz}{-gx^{3}-gx^{2}+gxz-x+gz-1}
Dividing by xzg-gx^{3}-x+zg-x^{2}g-1 undoes the multiplication by xzg-gx^{3}-x+zg-x^{2}g-1.
s=\frac{gxz}{\left(x+1\right)\left(gx^{2}-gz+1\right)}
Divide -gxz by xzg-gx^{3}-x+zg-x^{2}g-1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}