Solve for k (complex solution)
\left\{\begin{matrix}k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}\text{, }&x\neq y\text{ and }x\neq -y\text{ and }z\neq 0\text{ and }\left(|-\frac{arg(x)}{2}+arg(-\sqrt{x})|\geq \pi \text{ or }y\neq 0\right)\text{ and }\left(x\neq 0\text{ or }y\neq 0\right)\\k\neq 0\text{, }&y=0\text{ and }|-\frac{arg(x)}{2}+arg(-\sqrt{x})|<\pi \text{ and }z=0\text{ and }x\neq 0\end{matrix}\right.
Solve for k
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}
z\neq 0\text{ and }x>|y|
Share
Copied to clipboard
z=k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}=z
Swap sides so that all variable terms are on the left hand side.
\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k=z
Combine all terms containing k.
\frac{\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}=\frac{z}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}
Divide both sides by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}
Dividing by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}} undoes the multiplication by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}
Divide z by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}\text{, }k\neq 0
Variable k cannot be equal to 0.
z=k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}=z
Swap sides so that all variable terms are on the left hand side.
\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k=z
Combine all terms containing k.
\left(\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}\right)k=z
The equation is in standard form.
\frac{\left(\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}\right)k}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}=\frac{z}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}
Divide both sides by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}
Dividing by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}} undoes the multiplication by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}
Divide z by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}\text{, }k\neq 0
Variable k cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}