Skip to main content
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

z=k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}=z
Swap sides so that all variable terms are on the left hand side.
\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k=z
Combine all terms containing k.
\frac{\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}=\frac{z}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}
Divide both sides by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z}{\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}}
Dividing by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}} undoes the multiplication by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}
Divide z by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}\text{, }k\neq 0
Variable k cannot be equal to 0.
z=k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}
Variable k cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by k.
k\left(x+y\right)^{-\frac{1}{2}}+k\left(x-y\right)^{-\frac{1}{2}}=z
Swap sides so that all variable terms are on the left hand side.
\left(\left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}\right)k=z
Combine all terms containing k.
\left(\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}\right)k=z
The equation is in standard form.
\frac{\left(\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}\right)k}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}=\frac{z}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}
Divide both sides by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z}{\frac{1}{\sqrt{x+y}}+\frac{1}{\sqrt{x-y}}}
Dividing by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}} undoes the multiplication by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}
Divide z by \left(x+y\right)^{-\frac{1}{2}}+\left(x-y\right)^{-\frac{1}{2}}.
k=\frac{z\sqrt{x^{2}-y^{2}}}{\sqrt{x+y}+\sqrt{x-y}}\text{, }k\neq 0
Variable k cannot be equal to 0.