Solve for z
z=\sqrt{30}\approx 5.477225575
z=-\sqrt{30}\approx -5.477225575
Share
Copied to clipboard
6zz-30=5zz
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30z, the least common multiple of 5,z,6.
6z^{2}-30=5zz
Multiply z and z to get z^{2}.
6z^{2}-30=5z^{2}
Multiply z and z to get z^{2}.
6z^{2}-30-5z^{2}=0
Subtract 5z^{2} from both sides.
z^{2}-30=0
Combine 6z^{2} and -5z^{2} to get z^{2}.
z^{2}=30
Add 30 to both sides. Anything plus zero gives itself.
z=\sqrt{30} z=-\sqrt{30}
Take the square root of both sides of the equation.
6zz-30=5zz
Variable z cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30z, the least common multiple of 5,z,6.
6z^{2}-30=5zz
Multiply z and z to get z^{2}.
6z^{2}-30=5z^{2}
Multiply z and z to get z^{2}.
6z^{2}-30-5z^{2}=0
Subtract 5z^{2} from both sides.
z^{2}-30=0
Combine 6z^{2} and -5z^{2} to get z^{2}.
z=\frac{0±\sqrt{0^{2}-4\left(-30\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-30\right)}}{2}
Square 0.
z=\frac{0±\sqrt{120}}{2}
Multiply -4 times -30.
z=\frac{0±2\sqrt{30}}{2}
Take the square root of 120.
z=\sqrt{30}
Now solve the equation z=\frac{0±2\sqrt{30}}{2} when ± is plus.
z=-\sqrt{30}
Now solve the equation z=\frac{0±2\sqrt{30}}{2} when ± is minus.
z=\sqrt{30} z=-\sqrt{30}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}