Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

z+8=2z^{2}
Multiply both sides of the equation by 2.
z+8-2z^{2}=0
Subtract 2z^{2} from both sides.
-2z^{2}+z+8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
z=\frac{-1±\sqrt{1^{2}-4\left(-2\right)\times 8}}{2\left(-2\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2 for a, 1 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{-1±\sqrt{1-4\left(-2\right)\times 8}}{2\left(-2\right)}
Square 1.
z=\frac{-1±\sqrt{1+8\times 8}}{2\left(-2\right)}
Multiply -4 times -2.
z=\frac{-1±\sqrt{1+64}}{2\left(-2\right)}
Multiply 8 times 8.
z=\frac{-1±\sqrt{65}}{2\left(-2\right)}
Add 1 to 64.
z=\frac{-1±\sqrt{65}}{-4}
Multiply 2 times -2.
z=\frac{\sqrt{65}-1}{-4}
Now solve the equation z=\frac{-1±\sqrt{65}}{-4} when ± is plus. Add -1 to \sqrt{65}.
z=\frac{1-\sqrt{65}}{4}
Divide -1+\sqrt{65} by -4.
z=\frac{-\sqrt{65}-1}{-4}
Now solve the equation z=\frac{-1±\sqrt{65}}{-4} when ± is minus. Subtract \sqrt{65} from -1.
z=\frac{\sqrt{65}+1}{4}
Divide -1-\sqrt{65} by -4.
z=\frac{1-\sqrt{65}}{4} z=\frac{\sqrt{65}+1}{4}
The equation is now solved.
z+8=2z^{2}
Multiply both sides of the equation by 2.
z+8-2z^{2}=0
Subtract 2z^{2} from both sides.
z-2z^{2}=-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
-2z^{2}+z=-8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-2z^{2}+z}{-2}=-\frac{8}{-2}
Divide both sides by -2.
z^{2}+\frac{1}{-2}z=-\frac{8}{-2}
Dividing by -2 undoes the multiplication by -2.
z^{2}-\frac{1}{2}z=-\frac{8}{-2}
Divide 1 by -2.
z^{2}-\frac{1}{2}z=4
Divide -8 by -2.
z^{2}-\frac{1}{2}z+\left(-\frac{1}{4}\right)^{2}=4+\left(-\frac{1}{4}\right)^{2}
Divide -\frac{1}{2}, the coefficient of the x term, by 2 to get -\frac{1}{4}. Then add the square of -\frac{1}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
z^{2}-\frac{1}{2}z+\frac{1}{16}=4+\frac{1}{16}
Square -\frac{1}{4} by squaring both the numerator and the denominator of the fraction.
z^{2}-\frac{1}{2}z+\frac{1}{16}=\frac{65}{16}
Add 4 to \frac{1}{16}.
\left(z-\frac{1}{4}\right)^{2}=\frac{65}{16}
Factor z^{2}-\frac{1}{2}z+\frac{1}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z-\frac{1}{4}\right)^{2}}=\sqrt{\frac{65}{16}}
Take the square root of both sides of the equation.
z-\frac{1}{4}=\frac{\sqrt{65}}{4} z-\frac{1}{4}=-\frac{\sqrt{65}}{4}
Simplify.
z=\frac{\sqrt{65}+1}{4} z=\frac{1-\sqrt{65}}{4}
Add \frac{1}{4} to both sides of the equation.