Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(z^{3}+t^{3}\right)\left(2z-2t\right)}{\left(z^{2}-t^{2}\right)\left(z^{3}-z^{2}t+zt^{2}\right)}
Divide \frac{z^{3}+t^{3}}{z^{2}-t^{2}} by \frac{z^{3}-z^{2}t+zt^{2}}{2z-2t} by multiplying \frac{z^{3}+t^{3}}{z^{2}-t^{2}} by the reciprocal of \frac{z^{3}-z^{2}t+zt^{2}}{2z-2t}.
\frac{2\left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right)}{z\left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right)}
Factor the expressions that are not already factored.
\frac{2}{z}
Cancel out \left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right) in both numerator and denominator.
\frac{\left(z^{3}+t^{3}\right)\left(2z-2t\right)}{\left(z^{2}-t^{2}\right)\left(z^{3}-z^{2}t+zt^{2}\right)}
Divide \frac{z^{3}+t^{3}}{z^{2}-t^{2}} by \frac{z^{3}-z^{2}t+zt^{2}}{2z-2t} by multiplying \frac{z^{3}+t^{3}}{z^{2}-t^{2}} by the reciprocal of \frac{z^{3}-z^{2}t+zt^{2}}{2z-2t}.
\frac{2\left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right)}{z\left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right)}
Factor the expressions that are not already factored.
\frac{2}{z}
Cancel out \left(z+t\right)\left(z-t\right)\left(z^{2}-tz+t^{2}\right) in both numerator and denominator.