Solve for x
x=-\frac{3y}{25}+528
Solve for y
y=-\frac{25x}{3}+4400
Graph
Share
Copied to clipboard
\frac{y-4000}{-600}=\frac{x-48}{120-48}
Subtract 4000 from 3400 to get -600.
\frac{-y+4000}{600}=\frac{x-48}{120-48}
Multiply both numerator and denominator by -1.
\frac{-y+4000}{600}=\frac{x-48}{72}
Subtract 48 from 120 to get 72.
-\frac{1}{600}y+\frac{20}{3}=\frac{x-48}{72}
Divide each term of -y+4000 by 600 to get -\frac{1}{600}y+\frac{20}{3}.
-\frac{1}{600}y+\frac{20}{3}=\frac{1}{72}x-\frac{2}{3}
Divide each term of x-48 by 72 to get \frac{1}{72}x-\frac{2}{3}.
\frac{1}{72}x-\frac{2}{3}=-\frac{1}{600}y+\frac{20}{3}
Swap sides so that all variable terms are on the left hand side.
\frac{1}{72}x=-\frac{1}{600}y+\frac{20}{3}+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{1}{72}x=-\frac{1}{600}y+\frac{22}{3}
Add \frac{20}{3} and \frac{2}{3} to get \frac{22}{3}.
\frac{1}{72}x=-\frac{y}{600}+\frac{22}{3}
The equation is in standard form.
\frac{\frac{1}{72}x}{\frac{1}{72}}=\frac{-\frac{y}{600}+\frac{22}{3}}{\frac{1}{72}}
Multiply both sides by 72.
x=\frac{-\frac{y}{600}+\frac{22}{3}}{\frac{1}{72}}
Dividing by \frac{1}{72} undoes the multiplication by \frac{1}{72}.
x=-\frac{3y}{25}+528
Divide -\frac{y}{600}+\frac{22}{3} by \frac{1}{72} by multiplying -\frac{y}{600}+\frac{22}{3} by the reciprocal of \frac{1}{72}.
\frac{y-4000}{-600}=\frac{x-48}{120-48}
Subtract 4000 from 3400 to get -600.
\frac{-y+4000}{600}=\frac{x-48}{120-48}
Multiply both numerator and denominator by -1.
\frac{-y+4000}{600}=\frac{x-48}{72}
Subtract 48 from 120 to get 72.
-\frac{1}{600}y+\frac{20}{3}=\frac{x-48}{72}
Divide each term of -y+4000 by 600 to get -\frac{1}{600}y+\frac{20}{3}.
-\frac{1}{600}y+\frac{20}{3}=\frac{1}{72}x-\frac{2}{3}
Divide each term of x-48 by 72 to get \frac{1}{72}x-\frac{2}{3}.
-\frac{1}{600}y=\frac{1}{72}x-\frac{2}{3}-\frac{20}{3}
Subtract \frac{20}{3} from both sides.
-\frac{1}{600}y=\frac{1}{72}x-\frac{22}{3}
Subtract \frac{20}{3} from -\frac{2}{3} to get -\frac{22}{3}.
-\frac{1}{600}y=\frac{x}{72}-\frac{22}{3}
The equation is in standard form.
\frac{-\frac{1}{600}y}{-\frac{1}{600}}=\frac{\frac{x}{72}-\frac{22}{3}}{-\frac{1}{600}}
Multiply both sides by -600.
y=\frac{\frac{x}{72}-\frac{22}{3}}{-\frac{1}{600}}
Dividing by -\frac{1}{600} undoes the multiplication by -\frac{1}{600}.
y=-\frac{25x}{3}+4400
Divide \frac{x}{72}-\frac{22}{3} by -\frac{1}{600} by multiplying \frac{x}{72}-\frac{22}{3} by the reciprocal of -\frac{1}{600}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}