Solve for x
x=\frac{y+16}{2}
Solve for y
y=2\left(x-8\right)
Graph
Quiz
Algebra
5 problems similar to:
\frac { y - ( - 2 ) } { 0 - ( - 2 ) } = \frac { x - 7 } { 8 - 7 } =
Share
Copied to clipboard
\frac{y+2}{0-\left(-2\right)}=\frac{x-7}{8-7}
The opposite of -2 is 2.
\frac{y+2}{0+2}=\frac{x-7}{8-7}
The opposite of -2 is 2.
\frac{y+2}{2}=\frac{x-7}{8-7}
Add 0 and 2 to get 2.
\frac{y+2}{2}=\frac{x-7}{1}
Subtract 7 from 8 to get 1.
\frac{y+2}{2}=x-7
Anything divided by one gives itself.
\frac{1}{2}y+1=x-7
Divide each term of y+2 by 2 to get \frac{1}{2}y+1.
x-7=\frac{1}{2}y+1
Swap sides so that all variable terms are on the left hand side.
x=\frac{1}{2}y+1+7
Add 7 to both sides.
x=\frac{1}{2}y+8
Add 1 and 7 to get 8.
\frac{y+2}{0-\left(-2\right)}=\frac{x-7}{8-7}
The opposite of -2 is 2.
\frac{y+2}{0+2}=\frac{x-7}{8-7}
The opposite of -2 is 2.
\frac{y+2}{2}=\frac{x-7}{8-7}
Add 0 and 2 to get 2.
\frac{y+2}{2}=\frac{x-7}{1}
Subtract 7 from 8 to get 1.
\frac{y+2}{2}=x-7
Anything divided by one gives itself.
\frac{1}{2}y+1=x-7
Divide each term of y+2 by 2 to get \frac{1}{2}y+1.
\frac{1}{2}y=x-7-1
Subtract 1 from both sides.
\frac{1}{2}y=x-8
Subtract 1 from -7 to get -8.
\frac{\frac{1}{2}y}{\frac{1}{2}}=\frac{x-8}{\frac{1}{2}}
Multiply both sides by 2.
y=\frac{x-8}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
y=2x-16
Divide x-8 by \frac{1}{2} by multiplying x-8 by the reciprocal of \frac{1}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}