Solve for y
y=-18
Graph
Quiz
Linear Equation
\frac { y } { 2 + y } + \frac { 3 } { y - 2 } = 1 + \frac { 8 } { 4 - y ^ { 2 } }
Share
Copied to clipboard
\left(y-2\right)y+\left(y+2\right)\times 3=\left(y-2\right)\left(y+2\right)-8
Variable y cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(y-2\right)\left(y+2\right), the least common multiple of 2+y,y-2,4-y^{2}.
y^{2}-2y+\left(y+2\right)\times 3=\left(y-2\right)\left(y+2\right)-8
Use the distributive property to multiply y-2 by y.
y^{2}-2y+3y+6=\left(y-2\right)\left(y+2\right)-8
Use the distributive property to multiply y+2 by 3.
y^{2}+y+6=\left(y-2\right)\left(y+2\right)-8
Combine -2y and 3y to get y.
y^{2}+y+6=y^{2}-4-8
Consider \left(y-2\right)\left(y+2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 2.
y^{2}+y+6=y^{2}-12
Subtract 8 from -4 to get -12.
y^{2}+y+6-y^{2}=-12
Subtract y^{2} from both sides.
y+6=-12
Combine y^{2} and -y^{2} to get 0.
y=-12-6
Subtract 6 from both sides.
y=-18
Subtract 6 from -12 to get -18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}