Solve for p_y (complex solution)
\left\{\begin{matrix}p_{y}=2y^{-\frac{4}{3}}p_{x}x\text{, }&p_{x}\neq 0\text{ and }x\neq 0\text{ and }y\neq 0\\p_{y}\neq 0\text{, }&y=0\text{ and }p_{x}=0\text{ and }x\neq 0\end{matrix}\right.
Solve for p_x
p_{x}=\frac{p_{y}y^{\frac{4}{3}}}{2x}
x\neq 0\text{ and }p_{y}\neq 0
Solve for p_y
\left\{\begin{matrix}p_{y}=\frac{2p_{x}x}{y^{\frac{4}{3}}}\text{, }&p_{x}\neq 0\text{ and }x\neq 0\text{ and }y\neq 0\\p_{y}\neq 0\text{, }&y=0\text{ and }p_{x}=0\text{ and }x\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
p_{y}y^{\frac{4}{3}}=2xp_{x}
Variable p_{y} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p_{y}x, the least common multiple of x,p_{y}.
y^{\frac{4}{3}}p_{y}=2p_{x}x
The equation is in standard form.
\frac{y^{\frac{4}{3}}p_{y}}{y^{\frac{4}{3}}}=\frac{2p_{x}x}{y^{\frac{4}{3}}}
Divide both sides by y^{\frac{4}{3}}.
p_{y}=\frac{2p_{x}x}{y^{\frac{4}{3}}}
Dividing by y^{\frac{4}{3}} undoes the multiplication by y^{\frac{4}{3}}.
p_{y}=2y^{-\frac{4}{3}}p_{x}x
Divide 2xp_{x} by y^{\frac{4}{3}}.
p_{y}=2y^{-\frac{4}{3}}p_{x}x\text{, }p_{y}\neq 0
Variable p_{y} cannot be equal to 0.
p_{y}y^{\frac{4}{3}}=2xp_{x}
Multiply both sides of the equation by p_{y}x, the least common multiple of x,p_{y}.
2xp_{x}=p_{y}y^{\frac{4}{3}}
Swap sides so that all variable terms are on the left hand side.
\frac{2xp_{x}}{2x}=\frac{p_{y}y^{\frac{4}{3}}}{2x}
Divide both sides by 2x.
p_{x}=\frac{p_{y}y^{\frac{4}{3}}}{2x}
Dividing by 2x undoes the multiplication by 2x.
p_{y}y^{\frac{4}{3}}=2xp_{x}
Variable p_{y} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by p_{y}x, the least common multiple of x,p_{y}.
y^{\frac{4}{3}}p_{y}=2p_{x}x
The equation is in standard form.
\frac{y^{\frac{4}{3}}p_{y}}{y^{\frac{4}{3}}}=\frac{2p_{x}x}{y^{\frac{4}{3}}}
Divide both sides by y^{\frac{4}{3}}.
p_{y}=\frac{2p_{x}x}{y^{\frac{4}{3}}}
Dividing by y^{\frac{4}{3}} undoes the multiplication by y^{\frac{4}{3}}.
p_{y}=\frac{2p_{x}x}{y^{\frac{4}{3}}}\text{, }p_{y}\neq 0
Variable p_{y} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}