Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(y+9\right)y\left(y^{3}-16y\right)=\left(2x+18\right)\left(4-y\right)
Variable x cannot be equal to -9 since division by zero is not defined. Multiply both sides of the equation by 2y\left(x+9\right)\left(y+9\right), the least common multiple of 2x+18,y^{2}+9y.
\left(y^{2}+9y\right)\left(y^{3}-16y\right)=\left(2x+18\right)\left(4-y\right)
Use the distributive property to multiply y+9 by y.
y^{5}-16y^{3}+9y^{4}-144y^{2}=\left(2x+18\right)\left(4-y\right)
Use the distributive property to multiply y^{2}+9y by y^{3}-16y.
y^{5}-16y^{3}+9y^{4}-144y^{2}=8x-2yx+72-18y
Use the distributive property to multiply 2x+18 by 4-y.
8x-2yx+72-18y=y^{5}-16y^{3}+9y^{4}-144y^{2}
Swap sides so that all variable terms are on the left hand side.
8x-2yx-18y=y^{5}-16y^{3}+9y^{4}-144y^{2}-72
Subtract 72 from both sides.
8x-2yx=y^{5}-16y^{3}+9y^{4}-144y^{2}-72+18y
Add 18y to both sides.
\left(8-2y\right)x=y^{5}-16y^{3}+9y^{4}-144y^{2}-72+18y
Combine all terms containing x.
\left(8-2y\right)x=y^{5}+9y^{4}-16y^{3}-144y^{2}+18y-72
The equation is in standard form.
\frac{\left(8-2y\right)x}{8-2y}=\frac{\left(y-4\right)\left(y^{4}+13y^{3}+36y^{2}+18\right)}{8-2y}
Divide both sides by 8-2y.
x=\frac{\left(y-4\right)\left(y^{4}+13y^{3}+36y^{2}+18\right)}{8-2y}
Dividing by 8-2y undoes the multiplication by 8-2y.
x=-\frac{y^{4}}{2}-\frac{13y^{3}}{2}-18y^{2}-9
Divide \left(-4+y\right)\left(18+36y^{2}+13y^{3}+y^{4}\right) by 8-2y.
x=-\frac{y^{4}}{2}-\frac{13y^{3}}{2}-18y^{2}-9\text{, }x\neq -9
Variable x cannot be equal to -9.