Solve for y (complex solution)
y\in \mathrm{C}\setminus -5,5,0
Solve for y
y\in \mathrm{R}\setminus 5,-5,0
Graph
Share
Copied to clipboard
6y\left(y^{3}-125\right)\times \frac{y+5}{6y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Variable y cannot be equal to any of the values -5,0,5 since division by zero is not defined. Multiply both sides of the equation by 6y\left(y-5\right)\left(y+5\right), the least common multiple of y^{2}-25,6y.
\frac{6\left(y+5\right)}{6y}y\left(y^{3}-125\right)=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express 6\times \frac{y+5}{6y} as a single fraction.
\frac{y+5}{y}y\left(y^{3}-125\right)=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Cancel out 6 in both numerator and denominator.
\frac{y+5}{y}y^{4}-125\times \frac{y+5}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Use the distributive property to multiply \frac{y+5}{y}y by y^{3}-125.
\frac{\left(y+5\right)y^{4}}{y}-125\times \frac{y+5}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express \frac{y+5}{y}y^{4} as a single fraction.
\frac{\left(y+5\right)y^{4}}{y}+\frac{-125\left(y+5\right)}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express -125\times \frac{y+5}{y} as a single fraction.
\frac{\left(y+5\right)y^{4}}{y}+\frac{-125\left(y+5\right)y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express \frac{-125\left(y+5\right)}{y}y as a single fraction.
\frac{\left(y+5\right)y^{4}-125\left(y+5\right)y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Since \frac{\left(y+5\right)y^{4}}{y} and \frac{-125\left(y+5\right)y}{y} have the same denominator, add them by adding their numerators.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Do the multiplications in \left(y+5\right)y^{4}-125\left(y+5\right)y.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}=y^{4}+5y^{3}-125y-625
Use the distributive property to multiply y^{2}-25 by y^{2}+5y+25 and combine like terms.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}-y^{4}=5y^{3}-125y-625
Subtract y^{4} from both sides.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}-\frac{y^{4}y}{y}=5y^{3}-125y-625
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{4} times \frac{y}{y}.
\frac{y^{5}+5y^{4}-125y^{2}-625y-y^{4}y}{y}=5y^{3}-125y-625
Since \frac{y^{5}+5y^{4}-125y^{2}-625y}{y} and \frac{y^{4}y}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{5}+5y^{4}-125y^{2}-625y-y^{5}}{y}=5y^{3}-125y-625
Do the multiplications in y^{5}+5y^{4}-125y^{2}-625y-y^{4}y.
\frac{5y^{4}-125y^{2}-625y}{y}=5y^{3}-125y-625
Combine like terms in y^{5}+5y^{4}-125y^{2}-625y-y^{5}.
\frac{5y^{4}-125y^{2}-625y}{y}-5y^{3}=-125y-625
Subtract 5y^{3} from both sides.
\frac{5y^{4}-125y^{2}-625y}{y}+\frac{-5y^{3}y}{y}=-125y-625
To add or subtract expressions, expand them to make their denominators the same. Multiply -5y^{3} times \frac{y}{y}.
\frac{5y^{4}-125y^{2}-625y-5y^{3}y}{y}=-125y-625
Since \frac{5y^{4}-125y^{2}-625y}{y} and \frac{-5y^{3}y}{y} have the same denominator, add them by adding their numerators.
\frac{5y^{4}-125y^{2}-625y-5y^{4}}{y}=-125y-625
Do the multiplications in 5y^{4}-125y^{2}-625y-5y^{3}y.
\frac{-125y^{2}-625y}{y}=-125y-625
Combine like terms in 5y^{4}-125y^{2}-625y-5y^{4}.
\frac{-125y^{2}-625y}{y}+125y=-625
Add 125y to both sides.
\frac{-125y^{2}-625y}{y}+\frac{125yy}{y}=-625
To add or subtract expressions, expand them to make their denominators the same. Multiply 125y times \frac{y}{y}.
\frac{-125y^{2}-625y+125yy}{y}=-625
Since \frac{-125y^{2}-625y}{y} and \frac{125yy}{y} have the same denominator, add them by adding their numerators.
\frac{-125y^{2}-625y+125y^{2}}{y}=-625
Do the multiplications in -125y^{2}-625y+125yy.
\frac{-625y}{y}=-625
Combine like terms in -125y^{2}-625y+125y^{2}.
\frac{-625y}{y}+625=0
Add 625 to both sides.
\frac{-625y}{y}+\frac{625y}{y}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 625 times \frac{y}{y}.
\frac{-625y+625y}{y}=0
Since \frac{-625y}{y} and \frac{625y}{y} have the same denominator, add them by adding their numerators.
\frac{0}{y}=0
Combine like terms in -625y+625y.
0=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\in \mathrm{C}
This is true for any y.
y\in \mathrm{C}\setminus -5,0,5
Variable y cannot be equal to any of the values 0,-5,5.
6y\left(y^{3}-125\right)\times \frac{y+5}{6y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Variable y cannot be equal to any of the values -5,0,5 since division by zero is not defined. Multiply both sides of the equation by 6y\left(y-5\right)\left(y+5\right), the least common multiple of y^{2}-25,6y.
\frac{6\left(y+5\right)}{6y}y\left(y^{3}-125\right)=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express 6\times \frac{y+5}{6y} as a single fraction.
\frac{y+5}{y}y\left(y^{3}-125\right)=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Cancel out 6 in both numerator and denominator.
\frac{y+5}{y}y^{4}-125\times \frac{y+5}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Use the distributive property to multiply \frac{y+5}{y}y by y^{3}-125.
\frac{\left(y+5\right)y^{4}}{y}-125\times \frac{y+5}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express \frac{y+5}{y}y^{4} as a single fraction.
\frac{\left(y+5\right)y^{4}}{y}+\frac{-125\left(y+5\right)}{y}y=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express -125\times \frac{y+5}{y} as a single fraction.
\frac{\left(y+5\right)y^{4}}{y}+\frac{-125\left(y+5\right)y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Express \frac{-125\left(y+5\right)}{y}y as a single fraction.
\frac{\left(y+5\right)y^{4}-125\left(y+5\right)y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Since \frac{\left(y+5\right)y^{4}}{y} and \frac{-125\left(y+5\right)y}{y} have the same denominator, add them by adding their numerators.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}=\left(y^{2}-25\right)\left(y^{2}+5y+25\right)
Do the multiplications in \left(y+5\right)y^{4}-125\left(y+5\right)y.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}=y^{4}+5y^{3}-125y-625
Use the distributive property to multiply y^{2}-25 by y^{2}+5y+25 and combine like terms.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}-y^{4}=5y^{3}-125y-625
Subtract y^{4} from both sides.
\frac{y^{5}+5y^{4}-125y^{2}-625y}{y}-\frac{y^{4}y}{y}=5y^{3}-125y-625
To add or subtract expressions, expand them to make their denominators the same. Multiply y^{4} times \frac{y}{y}.
\frac{y^{5}+5y^{4}-125y^{2}-625y-y^{4}y}{y}=5y^{3}-125y-625
Since \frac{y^{5}+5y^{4}-125y^{2}-625y}{y} and \frac{y^{4}y}{y} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{5}+5y^{4}-125y^{2}-625y-y^{5}}{y}=5y^{3}-125y-625
Do the multiplications in y^{5}+5y^{4}-125y^{2}-625y-y^{4}y.
\frac{5y^{4}-125y^{2}-625y}{y}=5y^{3}-125y-625
Combine like terms in y^{5}+5y^{4}-125y^{2}-625y-y^{5}.
\frac{5y^{4}-125y^{2}-625y}{y}-5y^{3}=-125y-625
Subtract 5y^{3} from both sides.
\frac{5y^{4}-125y^{2}-625y}{y}+\frac{-5y^{3}y}{y}=-125y-625
To add or subtract expressions, expand them to make their denominators the same. Multiply -5y^{3} times \frac{y}{y}.
\frac{5y^{4}-125y^{2}-625y-5y^{3}y}{y}=-125y-625
Since \frac{5y^{4}-125y^{2}-625y}{y} and \frac{-5y^{3}y}{y} have the same denominator, add them by adding their numerators.
\frac{5y^{4}-125y^{2}-625y-5y^{4}}{y}=-125y-625
Do the multiplications in 5y^{4}-125y^{2}-625y-5y^{3}y.
\frac{-125y^{2}-625y}{y}=-125y-625
Combine like terms in 5y^{4}-125y^{2}-625y-5y^{4}.
\frac{-125y^{2}-625y}{y}+125y=-625
Add 125y to both sides.
\frac{-125y^{2}-625y}{y}+\frac{125yy}{y}=-625
To add or subtract expressions, expand them to make their denominators the same. Multiply 125y times \frac{y}{y}.
\frac{-125y^{2}-625y+125yy}{y}=-625
Since \frac{-125y^{2}-625y}{y} and \frac{125yy}{y} have the same denominator, add them by adding their numerators.
\frac{-125y^{2}-625y+125y^{2}}{y}=-625
Do the multiplications in -125y^{2}-625y+125yy.
\frac{-625y}{y}=-625
Combine like terms in -125y^{2}-625y+125y^{2}.
\frac{-625y}{y}+625=0
Add 625 to both sides.
\frac{-625y}{y}+\frac{625y}{y}=0
To add or subtract expressions, expand them to make their denominators the same. Multiply 625 times \frac{y}{y}.
\frac{-625y+625y}{y}=0
Since \frac{-625y}{y} and \frac{625y}{y} have the same denominator, add them by adding their numerators.
\frac{0}{y}=0
Combine like terms in -625y+625y.
0=0
Variable y cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by y.
y\in \mathrm{R}
This is true for any y.
y\in \mathrm{R}\setminus -5,0,5
Variable y cannot be equal to any of the values 0,-5,5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}