Solve for C
C=2y\left(y+9\right)
y\neq -9\text{ and }y\neq 0\text{ and }y\neq 2
Solve for y (complex solution)
\left\{\begin{matrix}y=\frac{-\sqrt{2C+81}-9}{2}\text{, }&C\neq 0\\y=\frac{\sqrt{2C+81}-9}{2}\text{, }&C\neq 44\text{ and }C\neq 0\end{matrix}\right.
Solve for y
\left\{\begin{matrix}y=\frac{-\sqrt{2C+81}-9}{2}\text{, }&C\geq -\frac{81}{2}\text{ and }C\neq 0\\y=\frac{\sqrt{2C+81}-9}{2}\text{, }&C\neq 44\text{ and }C\geq -\frac{81}{2}\text{ and }C\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
7y\left(y-2\right)\left(y^{2}+7y-18\right)\times \frac{14y^{2}}{7y^{2}-14y}=7Cy\left(y-2\right)
Variable C cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7Cy\left(y-2\right), the least common multiple of C,7y^{2}-14y.
\left(7y^{2}-14y\right)\left(y^{2}+7y-18\right)\times \frac{14y^{2}}{7y^{2}-14y}=7Cy\left(y-2\right)
Use the distributive property to multiply 7y by y-2.
\left(7y^{2}-14y\right)\left(y^{2}+7y-18\right)\times \frac{14y^{2}}{7y\left(y-2\right)}=7Cy\left(y-2\right)
Factor the expressions that are not already factored in \frac{14y^{2}}{7y^{2}-14y}.
\left(7y^{2}-14y\right)\left(y^{2}+7y-18\right)\times \frac{2y}{y-2}=7Cy\left(y-2\right)
Cancel out 7y in both numerator and denominator.
\frac{\left(7y^{2}-14y\right)\times 2y}{y-2}\left(y^{2}+7y-18\right)=7Cy\left(y-2\right)
Express \left(7y^{2}-14y\right)\times \frac{2y}{y-2} as a single fraction.
\frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y^{2}+7\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Use the distributive property to multiply \frac{\left(7y^{2}-14y\right)\times 2y}{y-2} by y^{2}+7y-18.
\frac{2\times 7\left(y-2\right)y^{2}}{y-2}y^{2}+7\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Factor the expressions that are not already factored in \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}.
2\times 7y^{2}y^{2}+7\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Cancel out y-2 in both numerator and denominator.
14y^{2}y^{2}+7\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Expand the expression.
14y^{4}+7\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
14y^{4}+7\times \frac{2\times 7\left(y-2\right)y^{2}}{y-2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Factor the expressions that are not already factored in \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}.
14y^{4}+7\times 2\times 7y^{2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Cancel out y-2 in both numerator and denominator.
14y^{4}+7\times 14y^{2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Expand the expression.
14y^{4}+98y^{2}y-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
Multiply 7 and 14 to get 98.
14y^{4}+98y^{3}-18\times \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}=7Cy\left(y-2\right)
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
14y^{4}+98y^{3}-18\times \frac{2\times 7\left(y-2\right)y^{2}}{y-2}=7Cy\left(y-2\right)
Factor the expressions that are not already factored in \frac{\left(7y^{2}-14y\right)\times 2y}{y-2}.
14y^{4}+98y^{3}-18\times 2\times 7y^{2}=7Cy\left(y-2\right)
Cancel out y-2 in both numerator and denominator.
14y^{4}+98y^{3}-18\times 14y^{2}=7Cy\left(y-2\right)
Expand the expression.
14y^{4}+98y^{3}-252y^{2}=7Cy\left(y-2\right)
Multiply -18 and 14 to get -252.
14y^{4}+98y^{3}-252y^{2}=7Cy^{2}-14yC
Use the distributive property to multiply 7Cy by y-2.
7Cy^{2}-14yC=14y^{4}+98y^{3}-252y^{2}
Swap sides so that all variable terms are on the left hand side.
\left(7y^{2}-14y\right)C=14y^{4}+98y^{3}-252y^{2}
Combine all terms containing C.
\frac{\left(7y^{2}-14y\right)C}{7y^{2}-14y}=\frac{14\left(y-2\right)\left(y+9\right)y^{2}}{7y^{2}-14y}
Divide both sides by 7y^{2}-14y.
C=\frac{14\left(y-2\right)\left(y+9\right)y^{2}}{7y^{2}-14y}
Dividing by 7y^{2}-14y undoes the multiplication by 7y^{2}-14y.
C=2y\left(y+9\right)
Divide 14\left(-2+y\right)\left(9+y\right)y^{2} by 7y^{2}-14y.
C=2y\left(y+9\right)\text{, }C\neq 0
Variable C cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}