Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y+7}{\left(y-5\right)\left(y-2\right)}-\frac{7}{\left(y-5\right)\left(y+5\right)}
Factor y^{2}-7y+10. Factor y^{2}-25.
\frac{\left(y+7\right)\left(y+5\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}-\frac{7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-5\right)\left(y-2\right) and \left(y-5\right)\left(y+5\right) is \left(y-5\right)\left(y-2\right)\left(y+5\right). Multiply \frac{y+7}{\left(y-5\right)\left(y-2\right)} times \frac{y+5}{y+5}. Multiply \frac{7}{\left(y-5\right)\left(y+5\right)} times \frac{y-2}{y-2}.
\frac{\left(y+7\right)\left(y+5\right)-7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Since \frac{\left(y+7\right)\left(y+5\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)} and \frac{7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+5y+7y+35-7y+14}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Do the multiplications in \left(y+7\right)\left(y+5\right)-7\left(y-2\right).
\frac{y^{2}+5y+49}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Combine like terms in y^{2}+5y+7y+35-7y+14.
\frac{y^{2}+5y+49}{y^{3}-2y^{2}-25y+50}
Expand \left(y-5\right)\left(y-2\right)\left(y+5\right).
\frac{y+7}{\left(y-5\right)\left(y-2\right)}-\frac{7}{\left(y-5\right)\left(y+5\right)}
Factor y^{2}-7y+10. Factor y^{2}-25.
\frac{\left(y+7\right)\left(y+5\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}-\frac{7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(y-5\right)\left(y-2\right) and \left(y-5\right)\left(y+5\right) is \left(y-5\right)\left(y-2\right)\left(y+5\right). Multiply \frac{y+7}{\left(y-5\right)\left(y-2\right)} times \frac{y+5}{y+5}. Multiply \frac{7}{\left(y-5\right)\left(y+5\right)} times \frac{y-2}{y-2}.
\frac{\left(y+7\right)\left(y+5\right)-7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Since \frac{\left(y+7\right)\left(y+5\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)} and \frac{7\left(y-2\right)}{\left(y-5\right)\left(y-2\right)\left(y+5\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+5y+7y+35-7y+14}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Do the multiplications in \left(y+7\right)\left(y+5\right)-7\left(y-2\right).
\frac{y^{2}+5y+49}{\left(y-5\right)\left(y-2\right)\left(y+5\right)}
Combine like terms in y^{2}+5y+7y+35-7y+14.
\frac{y^{2}+5y+49}{y^{3}-2y^{2}-25y+50}
Expand \left(y-5\right)\left(y-2\right)\left(y+5\right).