Evaluate
\frac{y^{2}-7y-21}{\left(y-4\right)\left(y^{2}-49\right)}
Expand
\frac{y^{2}-7y-21}{\left(y-4\right)\left(y^{2}-49\right)}
Graph
Share
Copied to clipboard
\frac{y+7}{\left(y-4\right)\left(y+7\right)}-\frac{7}{y^{2}-49}
Factor the expressions that are not already factored in \frac{y+7}{y^{2}+3y-28}.
\frac{1}{y-4}-\frac{7}{y^{2}-49}
Cancel out y+7 in both numerator and denominator.
\frac{1}{y-4}-\frac{7}{\left(y-7\right)\left(y+7\right)}
Factor y^{2}-49.
\frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}-\frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-4 and \left(y-7\right)\left(y+7\right) is \left(y-7\right)\left(y-4\right)\left(y+7\right). Multiply \frac{1}{y-4} times \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}. Multiply \frac{7}{\left(y-7\right)\left(y+7\right)} times \frac{y-4}{y-4}.
\frac{\left(y-7\right)\left(y+7\right)-7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Since \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} and \frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+7y-7y-49-7y+28}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Do the multiplications in \left(y-7\right)\left(y+7\right)-7\left(y-4\right).
\frac{y^{2}-7y-21}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Combine like terms in y^{2}+7y-7y-49-7y+28.
\frac{y^{2}-7y-21}{y^{3}-4y^{2}-49y+196}
Expand \left(y-7\right)\left(y-4\right)\left(y+7\right).
\frac{y+7}{\left(y-4\right)\left(y+7\right)}-\frac{7}{y^{2}-49}
Factor the expressions that are not already factored in \frac{y+7}{y^{2}+3y-28}.
\frac{1}{y-4}-\frac{7}{y^{2}-49}
Cancel out y+7 in both numerator and denominator.
\frac{1}{y-4}-\frac{7}{\left(y-7\right)\left(y+7\right)}
Factor y^{2}-49.
\frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}-\frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-4 and \left(y-7\right)\left(y+7\right) is \left(y-7\right)\left(y-4\right)\left(y+7\right). Multiply \frac{1}{y-4} times \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}. Multiply \frac{7}{\left(y-7\right)\left(y+7\right)} times \frac{y-4}{y-4}.
\frac{\left(y-7\right)\left(y+7\right)-7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Since \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} and \frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+7y-7y-49-7y+28}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Do the multiplications in \left(y-7\right)\left(y+7\right)-7\left(y-4\right).
\frac{y^{2}-7y-21}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Combine like terms in y^{2}+7y-7y-49-7y+28.
\frac{y^{2}-7y-21}{y^{3}-4y^{2}-49y+196}
Expand \left(y-7\right)\left(y-4\right)\left(y+7\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}