Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{y+7}{\left(y-4\right)\left(y+7\right)}-\frac{7}{y^{2}-49}
Factor the expressions that are not already factored in \frac{y+7}{y^{2}+3y-28}.
\frac{1}{y-4}-\frac{7}{y^{2}-49}
Cancel out y+7 in both numerator and denominator.
\frac{1}{y-4}-\frac{7}{\left(y-7\right)\left(y+7\right)}
Factor y^{2}-49.
\frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}-\frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-4 and \left(y-7\right)\left(y+7\right) is \left(y-7\right)\left(y-4\right)\left(y+7\right). Multiply \frac{1}{y-4} times \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}. Multiply \frac{7}{\left(y-7\right)\left(y+7\right)} times \frac{y-4}{y-4}.
\frac{\left(y-7\right)\left(y+7\right)-7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Since \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} and \frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+7y-7y-49-7y+28}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Do the multiplications in \left(y-7\right)\left(y+7\right)-7\left(y-4\right).
\frac{y^{2}-7y-21}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Combine like terms in y^{2}+7y-7y-49-7y+28.
\frac{y^{2}-7y-21}{y^{3}-4y^{2}-49y+196}
Expand \left(y-7\right)\left(y-4\right)\left(y+7\right).
\frac{y+7}{\left(y-4\right)\left(y+7\right)}-\frac{7}{y^{2}-49}
Factor the expressions that are not already factored in \frac{y+7}{y^{2}+3y-28}.
\frac{1}{y-4}-\frac{7}{y^{2}-49}
Cancel out y+7 in both numerator and denominator.
\frac{1}{y-4}-\frac{7}{\left(y-7\right)\left(y+7\right)}
Factor y^{2}-49.
\frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}-\frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of y-4 and \left(y-7\right)\left(y+7\right) is \left(y-7\right)\left(y-4\right)\left(y+7\right). Multiply \frac{1}{y-4} times \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y+7\right)}. Multiply \frac{7}{\left(y-7\right)\left(y+7\right)} times \frac{y-4}{y-4}.
\frac{\left(y-7\right)\left(y+7\right)-7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Since \frac{\left(y-7\right)\left(y+7\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} and \frac{7\left(y-4\right)}{\left(y-7\right)\left(y-4\right)\left(y+7\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{y^{2}+7y-7y-49-7y+28}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Do the multiplications in \left(y-7\right)\left(y+7\right)-7\left(y-4\right).
\frac{y^{2}-7y-21}{\left(y-7\right)\left(y-4\right)\left(y+7\right)}
Combine like terms in y^{2}+7y-7y-49-7y+28.
\frac{y^{2}-7y-21}{y^{3}-4y^{2}-49y+196}
Expand \left(y-7\right)\left(y-4\right)\left(y+7\right).